Datasets:
File size: 3,801 Bytes
190b59d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
pretty_name: Repository learning training dataset
tags:
- code-review
- github-data
- contrastive-learning
- fine-tuning
- semantic-indexing
- multi-modal
- jsonl
- faiss-index
- tree-sitter
license: mit
language:
- en
size_categories:
- 10K<n<100K
task_categories:
- text-generation
- text-classification
- text-retrieval
- feature-extraction
source_datasets:
- github-repositories
annotations_creators:
- machine-generated
- expert-reviewed
---
# Repository Learning Training Dataset
This dataset contains training data extracted from GitHub repositories for training context-aware code review models. The dataset supports three primary machine learning tasks: contrastive learning, fine-tuning, and semantic indexing.
## Dataset Overview
**Purpose**: Enable training of AI models that understand repository-specific code review patterns and provide contextual feedback.
**Source**: GitHub repositories with rich pull request history and review comments.
## Dataset Structure
```
{repository-name}/
βββ contrastive/
β βββ changed_files_001.json # Files changed together (positive pairs)
β βββ changed_files_002.json
β βββ ...
βββ fine_tune/
β βββ pr_reviews_001.jsonl # Instruction-following format
β βββ pr_reviews_002.jsonl
β βββ ...
βββ index/
β βββ functions.json # AST-extracted function metadata
βββ manifest.json # Processing metadata
```
## Data Components
### 1. Contrastive Learning Data (`/contrastive/`)
**Format**: JSON files containing file groupings for contrastive learning.
**Purpose**: Learn semantic relationships between code files based on change patterns.
**Structure**:
```json
{
"pr_12345": [
"src/components/Button.tsx",
"src/styles/button.css",
"tests/Button.test.tsx"
],
"pr_12346": [
"src/api/user.py",
"src/models/user.py",
"tests/test_user.py"
]
}
```
**Usage**: Files changed together form positive pairs; files from different PRs form negative pairs for contrastive learning.
### 2. Fine-Tuning Data (`/fine_tune/`)
**Format**: JSONL files with instruction-following examples.
**Purpose**: Adapt language models to repository-specific review patterns and conventions.
**Structure**:
```json
{
"prompt": "Code diff:\n```diff\n+def calculate_score(user_data):\n+ return sum(user_data.values())\n```\nPrevious comments:\n- alice: Consider input validation\n\nPlease write a code review comment:",
"completion": "Good addition! I'd suggest adding type hints and handling edge cases where user_data might be empty or contain non-numeric values."
}
```
**Features**:
- Chronological conversation context
- Multi-turn review discussions
- Repository-specific terminology and patterns
- Code diff context with surrounding discussion
### 3. Semantic Index Data (`/index/`)
**Format**: JSON metadata with function definitions and embeddings.
**Purpose**: Enable fast semantic search across repository functions and documentation.
**Structure** (`functions.json`):
```json
[
{
"file": "src/utils/parser.py",
"name": "parse_diff_hunk",
"start_line": 45,
"end_line": 67,
"code": "def parse_diff_hunk(hunk_text: str) -> DiffHunk:\n # Function implementation...",
}
]
```
**Components**:
- **AST Extraction**: Tree-sitter parsers for different programming languages
## Data Generation Pipeline
### Data Statistics
| Repository | PRs | Review Comments | Functions | Languages |
|------------|-----|-----------------|-----------|-----------|
| dotnet/xharness | 100 | 50 | 1500 | C# |
| dotnet/runtime | N/A | N/A | N/A | C#, c, c++ |
## Usage Examples
If you use this dataset, please refer to https://github.com/kotlarmilos/repository-learning |