Datasets:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pretty_name: Repository learning training dataset
|
| 3 |
+
tags:
|
| 4 |
+
- code-review
|
| 5 |
+
- github-data
|
| 6 |
+
- contrastive-learning
|
| 7 |
+
- fine-tuning
|
| 8 |
+
- semantic-indexing
|
| 9 |
+
- multi-modal
|
| 10 |
+
- jsonl
|
| 11 |
+
- faiss-index
|
| 12 |
+
- tree-sitter
|
| 13 |
+
license: mit
|
| 14 |
+
language:
|
| 15 |
+
- en
|
| 16 |
+
size_categories:
|
| 17 |
+
- 10K<n<100K
|
| 18 |
+
task_categories:
|
| 19 |
+
- text-generation
|
| 20 |
+
- text-classification
|
| 21 |
+
- text-retrieval
|
| 22 |
+
- feature-extraction
|
| 23 |
+
source_datasets:
|
| 24 |
+
- github-repositories
|
| 25 |
+
annotations_creators:
|
| 26 |
+
- machine-generated
|
| 27 |
+
- expert-reviewed
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
# Repository Learning Training Dataset
|
| 31 |
+
|
| 32 |
+
This dataset contains training data extracted from GitHub repositories for training context-aware code review models. The dataset supports three primary machine learning tasks: contrastive learning, fine-tuning, and semantic indexing.
|
| 33 |
+
|
| 34 |
+
## Dataset Overview
|
| 35 |
+
|
| 36 |
+
**Purpose**: Enable training of AI models that understand repository-specific code review patterns and provide contextual feedback.
|
| 37 |
+
|
| 38 |
+
**Source**: GitHub repositories with rich pull request history and review comments.
|
| 39 |
+
|
| 40 |
+
## Dataset Structure
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
{repository-name}/
|
| 44 |
+
βββ contrastive/
|
| 45 |
+
β βββ changed_files_001.json # Files changed together (positive pairs)
|
| 46 |
+
β βββ changed_files_002.json
|
| 47 |
+
β βββ ...
|
| 48 |
+
βββ fine_tune/
|
| 49 |
+
β βββ pr_reviews_001.jsonl # Instruction-following format
|
| 50 |
+
β βββ pr_reviews_002.jsonl
|
| 51 |
+
β βββ ...
|
| 52 |
+
βββ index/
|
| 53 |
+
β βββ functions.json # AST-extracted function metadata
|
| 54 |
+
βββ manifest.json # Processing metadata
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Data Components
|
| 58 |
+
|
| 59 |
+
### 1. Contrastive Learning Data (`/contrastive/`)
|
| 60 |
+
|
| 61 |
+
**Format**: JSON files containing file groupings for contrastive learning.
|
| 62 |
+
|
| 63 |
+
**Purpose**: Learn semantic relationships between code files based on change patterns.
|
| 64 |
+
|
| 65 |
+
**Structure**:
|
| 66 |
+
```json
|
| 67 |
+
{
|
| 68 |
+
"pr_12345": [
|
| 69 |
+
"src/components/Button.tsx",
|
| 70 |
+
"src/styles/button.css",
|
| 71 |
+
"tests/Button.test.tsx"
|
| 72 |
+
],
|
| 73 |
+
"pr_12346": [
|
| 74 |
+
"src/api/user.py",
|
| 75 |
+
"src/models/user.py",
|
| 76 |
+
"tests/test_user.py"
|
| 77 |
+
]
|
| 78 |
+
}
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
**Usage**: Files changed together form positive pairs; files from different PRs form negative pairs for contrastive learning.
|
| 82 |
+
|
| 83 |
+
### 2. Fine-Tuning Data (`/fine_tune/`)
|
| 84 |
+
|
| 85 |
+
**Format**: JSONL files with instruction-following examples.
|
| 86 |
+
|
| 87 |
+
**Purpose**: Adapt language models to repository-specific review patterns and conventions.
|
| 88 |
+
|
| 89 |
+
**Structure**:
|
| 90 |
+
```json
|
| 91 |
+
{
|
| 92 |
+
"prompt": "Code diff:\n```diff\n+def calculate_score(user_data):\n+ return sum(user_data.values())\n```\nPrevious comments:\n- alice: Consider input validation\n\nPlease write a code review comment:",
|
| 93 |
+
"completion": "Good addition! I'd suggest adding type hints and handling edge cases where user_data might be empty or contain non-numeric values."
|
| 94 |
+
}
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
**Features**:
|
| 98 |
+
- Chronological conversation context
|
| 99 |
+
- Multi-turn review discussions
|
| 100 |
+
- Repository-specific terminology and patterns
|
| 101 |
+
- Code diff context with surrounding discussion
|
| 102 |
+
|
| 103 |
+
### 3. Semantic Index Data (`/index/`)
|
| 104 |
+
|
| 105 |
+
**Format**: JSON metadata with function definitions and embeddings.
|
| 106 |
+
|
| 107 |
+
**Purpose**: Enable fast semantic search across repository functions and documentation.
|
| 108 |
+
|
| 109 |
+
**Structure** (`functions.json`):
|
| 110 |
+
```json
|
| 111 |
+
[
|
| 112 |
+
{
|
| 113 |
+
"file": "src/utils/parser.py",
|
| 114 |
+
"name": "parse_diff_hunk",
|
| 115 |
+
"start_line": 45,
|
| 116 |
+
"end_line": 67,
|
| 117 |
+
"code": "def parse_diff_hunk(hunk_text: str) -> DiffHunk:\n # Function implementation...",
|
| 118 |
+
}
|
| 119 |
+
]
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
**Components**:
|
| 123 |
+
- **AST Extraction**: Tree-sitter parsers for different programming languages
|
| 124 |
+
|
| 125 |
+
## Data Generation Pipeline
|
| 126 |
+
|
| 127 |
+
### Data Statistics
|
| 128 |
+
|
| 129 |
+
| Repository | PRs | Review Comments | Functions | Languages |
|
| 130 |
+
|------------|-----|-----------------|-----------|-----------|
|
| 131 |
+
| dotnet/xharness | 100 | 50 | 1500 | C# |
|
| 132 |
+
| dotnet/runtime | N/A | N/A | N/A | C#, c, c++ |
|
| 133 |
+
|
| 134 |
+
## Usage Examples
|
| 135 |
+
|
| 136 |
+
If you use this dataset, please refer to https://github.com/kotlarmilos/repository-learning
|