metadata
pretty_name: diffractgpt_jarvis_dft (XRD Spectra → Structure)
license: mit
tags:
- materials-science
- text-to-structure
- text2text-generation
- instruction-tuning
task_categories:
- text2text-generation
dataset_info:
features:
- name: id
dtype: string
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: null
num_examples: null
- name: test
num_bytes: null
num_examples: null
language:
- en
diffractgpt_jarvis_dft (XRD Spectra → Structure)
Goal. Map a textual description of a material (composition + XRD peaks, etc.) to a compact crystal structure description (lattice lengths, angles, fractional coordinates, atom types).
Data Fields
id(str): source identifier (e.g., POSCAR/JVASP id).instruction(str): the generic instruction.input(str): material description (composition, XRD, etc.).output(str): target structure text (lattice lengths/angles + fractional coords).
Splits
train.jsontest.json
Quickstart
from datasets import load_dataset
ds = load_dataset("knc6/diffractgpt_jarvis_dft", data_files={
"train": "train.json",
"test": "test.json"
})
print(ds)
print(ds["train"][0])