Search is not available for this dataset
| fact
				 string | imports
				 string | filename
				 string | symbolic_name
				 string | __index_level_0__
				 int64 | 
|---|---|---|---|---|
| 
	Definition annot {A B} (a : A) (b : B) : A := a. | 
	Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | 
	coq-community-autosubst/Autosubst_Basics | 
	coq-community-autosubst | 0 | 
| 
	Definition id {A} (x : A) := x. | 
	Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | 
	coq-community-autosubst/Autosubst_Basics | 
	coq-community-autosubst | 1 | 
| 
	Definition var := nat. | 
	Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | 
	coq-community-autosubst/Autosubst_Basics | 
	coq-community-autosubst | 2 | 
| 
	Definition iterate := fix iterate {A} (f : A -> A) n a := match n with | 0 => a | S n' => f(iterate f n' a) end. | 
	Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | 
	coq-community-autosubst/Autosubst_Basics | 
	coq-community-autosubst | 3 | 
| 
	Definition funcomp {A B C : Type} (f : A -> B) (g : B -> C) x := g(f(x)). | 
	Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | 
	coq-community-autosubst/Autosubst_Basics | 
	coq-community-autosubst | 4 | 
| 
	Definition scons {X : Type} (s : X) (sigma : var -> X) (x : var) : X := match x with S y => sigma y | _ => s end. | 
	Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | 
	coq-community-autosubst/Autosubst_Basics | 
	coq-community-autosubst | 5 | 
| 
	Definition lift (x y : var) : var := plus x y. | 
	Coq.Program.Tactics Coq.Arith.PeanoNat List FunctionalExtensionality | 
	coq-community-autosubst/Autosubst_Basics | 
	coq-community-autosubst | 6 | 
| 
	Variable (A B C : Type). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_MMapInstances | 
	coq-community-autosubst | 7 | 
| 
	Variable (MMap_A_B : MMap A B). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_MMapInstances | 
	coq-community-autosubst | 8 | 
| 
	Variable (MMap_A_C : MMap A C). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_MMapInstances | 
	coq-community-autosubst | 9 | 
| 
	Variable (MMapLemmas_A_B : MMapLemmas A B). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_MMapInstances | 
	coq-community-autosubst | 10 | 
| 
	Variable (MMapLemmas_A_C : MMapLemmas A C). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_MMapInstances | 
	coq-community-autosubst | 11 | 
| 
	Variable (MMapExt_A_B : MMapExt A B). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_MMapInstances | 
	coq-community-autosubst | 12 | 
| 
	Variable (MMapExt_A_C : MMapExt A C). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_MMapInstances | 
	coq-community-autosubst | 13 | 
| 
	Definition _bind (T1 : Type) (T2 : Type) (n : nat) := T2. | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_Classes | 
	coq-community-autosubst | 14 | 
| 
	Definition scomp {A} `{Subst A} (f : var -> A) (g : var -> A) : var -> A := f >>> subst g. | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_Classes | 
	coq-community-autosubst | 15 | 
| 
	Definition hcomp {A B} `{HSubst A B} (f : var -> B) (g : var -> A) : var -> B := f >>> hsubst g. | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_Classes | 
	coq-community-autosubst | 16 | 
| 
	Definition ren {T} `{Ids T} (xi : var -> var) : var -> T := xi >>> ids. | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_Classes | 
	coq-community-autosubst | 17 | 
| 
	Definition up {T} `{Ids T} `{Rename T} (sigma : var -> T) : var -> T := ids 0 .: sigma >>> rename (+1). | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_Classes | 
	coq-community-autosubst | 18 | 
| 
	Definition upren (xi : var -> var) : (var -> var) := 0 .: xi >>> S. | 
	Autosubst_Basics Autosubst_MMap | 
	coq-community-autosubst/Autosubst_Classes | 
	coq-community-autosubst | 19 | 
| 
	Axiom Pigeon_In_Hole : nat -> nat -> Prop. | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 20 | 
| 
	Definition cons_option {A: Type} (e: option A) (l: list A) := match e with | None => l | Some v => v:: l end. | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 21 | 
| 
	Fixpoint map_n (F: nat -> option Prop) (n: nat) := cons_option (F n) (match n with | O => nil | S n' => map_n F n' end). | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 22 | 
| 
	Fixpoint or_list (l: list Prop) := match l with | nil => False | e::nil => e | e::l => e \/ or_list l end. | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 23 | 
| 
	Fixpoint and_list (l: list Prop) := match l with | nil => True | e::nil => e | e::l => e /\ and_list l end. | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 24 | 
| 
	Definition big_or (n:nat) (F: nat -> option Prop) := or_list (map_n F n). | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 25 | 
| 
	Definition big_and (n:nat) (F: nat -> option Prop) := and_list (map_n F n). | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 26 | 
| 
	Fixpoint pigeon_in_hole (b:nat) (n:nat) : Prop := (big_or n (fun n => Some (Pigeon_In_Hole b n)) /\ match b with | O => True | S b' => pigeon_in_hole b' n end). | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 27 | 
| 
	Fixpoint forall_2 (P : nat -> nat -> option Prop) (i:nat) (j:nat) := big_and j (P i) /\ match i with | O => True | S i' => forall_2 P i' j end. | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 28 | 
| 
	Definition at_most_one_pigeon_per_hole (dis:bool) (b:nat) (k:nat) := let F i j := if dis then (not (Pigeon_In_Hole i k) \/ not (Pigeon_In_Hole j k)) else (Pigeon_In_Hole i k -> Pigeon_In_Hole j k -> False) in Some (forall_2 (fun i j => if Nat.ltb i j then Some (F i j) else None) b b). | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 29 | 
| 
	Definition at_most_one_pigeon (dis: bool) (b:nat) (n:nat) := big_and n (at_most_one_pigeon_per_hole dis b). | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 30 | 
| 
	Definition pigeon_hole (dis: bool) (b:nat) (n:nat) := pigeon_in_hole b n /\ at_most_one_pigeon dis b n. | 
	List | 
	fbesson-itauto/benchmark/pigeon_hole | 
	fbesson-itauto | 31 | 
| 
	Axiom width: Z. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_9 | 
	fbesson-itauto | 32 | 
| 
	Fixpoint compile(program: nat): list Z := match program with | S n => Z.of_nat n :: compile n | O => nil end. | 
	ZArith List Cdcl.Itauto | 
	fbesson-itauto/issues/issue_2 | 
	fbesson-itauto | 33 | 
| 
	Axiom F: list Z -> list Z. | 
	ZArith List Cdcl.Itauto | 
	fbesson-itauto/issues/issue_2 | 
	fbesson-itauto | 34 | 
| 
	Axiom X : Type. | 
	ZArith List Cdcl.Itauto | 
	fbesson-itauto/issues/issue_2 | 
	fbesson-itauto | 35 | 
| 
	Axiom x : X. | 
	ZArith List Cdcl.Itauto | 
	fbesson-itauto/issues/issue_2 | 
	fbesson-itauto | 36 | 
| 
	Axiom opaque_compile: nat -> list Z. | 
	ZArith List Cdcl.Itauto | 
	fbesson-itauto/issues/issue_2 | 
	fbesson-itauto | 37 | 
| 
	Variables A B : Set. | 
	Cdcl.Itauto List ZArith Lia | 
	fbesson-itauto/issues/issue_cc | 
	fbesson-itauto | 39 | 
| 
	Variable P : A -> bool. | 
	Cdcl.Itauto List ZArith Lia | 
	fbesson-itauto/issues/issue_cc | 
	fbesson-itauto | 40 | 
| 
	Variable R : A -> B -> Prop. | 
	Cdcl.Itauto List ZArith Lia | 
	fbesson-itauto/issues/issue_cc | 
	fbesson-itauto | 41 | 
| 
	Definition Q (b : B) (r : A) := P r = true -> R r b. | 
	Cdcl.Itauto List ZArith Lia | 
	fbesson-itauto/issues/issue_cc | 
	fbesson-itauto | 42 | 
| 
	Variable F : nat -> Prop. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_12 | 
	fbesson-itauto | 43 | 
| 
	Fixpoint orn (n : nat) := match n with | O => F 0 | S m => F n \/ orn m end. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_12 | 
	fbesson-itauto | 44 | 
| 
	Axiom Fbad : forall n, F n -> False. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_12 | 
	fbesson-itauto | 45 | 
| 
	Definition Register := Z. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_8 | 
	fbesson-itauto | 46 | 
| 
	Record ok (n: nat) := { getOk1: n <= 10 }. | 
	Cdcl.Itauto Lia | 
	fbesson-itauto/issues/issue_3 | 
	fbesson-itauto | 47 | 
| 
	Record ok' := { getP: Prop; getOk': getP }. | 
	Cdcl.Itauto Lia | 
	fbesson-itauto/issues/issue_3 | 
	fbesson-itauto | 48 | 
| 
	Definition block (A: Prop) := A. | 
	Cdcl.Itauto | 
	fbesson-itauto/issues/cnf | 
	fbesson-itauto | 49 | 
| 
	Axiom word: Type. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_10 | 
	fbesson-itauto | 51 | 
| 
	Axiom w2z : word -> Z. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_10 | 
	fbesson-itauto | 52 | 
| 
	Axiom z2w : Z -> word. | 
	Lia ZArith Cdcl.Itauto | 
	fbesson-itauto/issues/issue_10 | 
	fbesson-itauto | 53 | 
| 
	Axiom stmt: Type. | 
	Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | 
	fbesson-itauto/test-suite/arith | 
	fbesson-itauto | 55 | 
| 
	Axiom stackalloc_size: stmt -> Z. | 
	Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | 
	fbesson-itauto/test-suite/arith | 
	fbesson-itauto | 56 | 
| 
	Axiom bytes_per_word: Z. | 
	Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | 
	fbesson-itauto/test-suite/arith | 
	fbesson-itauto | 57 | 
| 
	Axiom list_union: forall {A: Type}, (A -> A -> bool) -> list A -> list A -> list A. | 
	Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | 
	fbesson-itauto/test-suite/arith | 
	fbesson-itauto | 58 | 
| 
	Axiom modVars_as_list: (Z -> Z -> bool) -> stmt -> list Z. | 
	Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | 
	fbesson-itauto/test-suite/arith | 
	fbesson-itauto | 59 | 
| 
	Axiom of_Z: Z -> word. | 
	Cdcl.Itauto Uint63 Bool ZArith Lia Coq.Lists.List Coq.ZArith.ZArith Coq.micromega.Lia | 
	fbesson-itauto/test-suite/arith | 
	fbesson-itauto | 60 | 
| 
	Variable f : nat -> nat. | 
	ZArith List Lia ZifyClasses Cdcl.NOlia | 
	fbesson-itauto/test-suite/no_test_lia | 
	fbesson-itauto | 61 | 
| 
	Axiom f : nat -> nat. | 
	ZArith List Lia ZifyClasses Cdcl.NOlia | 
	fbesson-itauto/test-suite/no_test_lia | 
	fbesson-itauto | 62 | 
| 
	Variable f : R -> R. | 
	ZArith List Lra ZifyClasses ZArith Cdcl.NOlra Reals | 
	fbesson-itauto/test-suite/no_test_lra | 
	fbesson-itauto | 63 | 
| 
	Axiom f : R -> R. | 
	ZArith List Lra ZifyClasses ZArith Cdcl.NOlra Reals | 
	fbesson-itauto/test-suite/no_test_lra | 
	fbesson-itauto | 64 | 
| 
	Definition zero := 0%uint63. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 65 | 
| 
	Definition one := 1%uint63. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 66 | 
| 
	Definition int_of_nat (n:nat) := Uint63.of_Z (Z.of_nat n). | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 67 | 
| 
	Definition testbit (i:Uint63.int) (n:nat) := if 63 <=? n then false else Uint63.bit i (int_of_nat n). | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 68 | 
| 
	Definition interp:= (fun i => (Uint63.sub i one)). | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 69 | 
| 
	Definition is_mask := (fun (m: Uint63.int) (n: nat) => forall p, testbit m p = true <-> n = p). | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 70 | 
| 
	Variable P : nat -> bool. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 71 | 
| 
	Fixpoint forall_n (n:nat) : bool := match n with | O => P O | S n' => P n && forall_n n' end. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 72 | 
| 
	Variable P : nat -> nat -> bool. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 73 | 
| 
	Fixpoint forall_2n (n:nat) (m:nat) := match n with | O => forall_n (P O) m | S n' => forall_n (P n) m && forall_2n n' m end. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 74 | 
| 
	Definition mask_spec : forall m n, is_mask m n -> if 63 <=? n then False else m = Uint63.lsl one (int_of_nat n). | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 75 | 
| 
	Definition ones (n:int) := ((1 << n) - 1)%uint63. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 76 | 
| 
	Definition split_m (i: int) (m: int) := ( (i land ((ones digits) << m)) lor ((i land (ones m))))%uint63. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 77 | 
| 
	Definition is_set (k:int) (m:nat) := (forall p, (p < m)%nat -> testbit k p = false) /\ testbit k m = true. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 78 | 
| 
	Definition is_set_int (k:int) (m:int) := (forall p, (p <? m = true)%uint63 -> bit k p = false) /\ bit k m = true. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 79 | 
| 
	Definition nat_of_int (i:int) := Z.to_nat (to_Z i). | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 80 | 
| 
	Definition not_int (x : int) := (- x - 1)%uint63. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 81 | 
| 
	Definition bit_excl (x y: int) := (forall n : int, bit x n = true -> bit y n = true -> False). | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 82 | 
| 
	Definition lowest_bit (x: int) := (x land (opp x))%uint63. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 83 | 
| 
	Fixpoint find_lowest (n: nat) (k: int) (p: nat) := match p with | O => n | S q => if testbit k (n - p)%nat then (n - p)%nat else find_lowest n k q end. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 84 | 
| 
	Definition digits := Some 63%nat. | 
	Bool ZifyClasses ZifyUint63 ZArith Lia Cdcl.PatriciaR | 
	fbesson-itauto/theories/KeyInt | 
	fbesson-itauto | 85 | 
| 
	Record RarithThy : Type. | 
	Cdcl.Itauto ZifyClasses Lra Reals | 
	fbesson-itauto/theories/NOlra | 
	fbesson-itauto | 86 | 
| 
	Axiom t: Type. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 87 | 
| 
	Axiom zero: t. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 88 | 
| 
	Axiom eqb: t -> t -> bool. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 89 | 
| 
	Axiom testbit: t -> nat -> bool. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 90 | 
| 
	Axiom interp: t -> t. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 91 | 
| 
	Axiom land: t -> t -> t. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 92 | 
| 
	Axiom lxor: t -> t -> t. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 93 | 
| 
	Axiom lopp: t -> t. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 94 | 
| 
	Axiom ltb: t -> t -> bool. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 95 | 
| 
	Definition is_mask (m: t) (n: nat) := forall p, testbit m p = true <-> n = p. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 96 | 
| 
	Axiom zero_spec: forall n, testbit zero n = false. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 97 | 
| 
	Axiom eqb_spec : forall k1 k2, eqb k1 k2 = true <-> k1 = k2. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 98 | 
| 
	Axiom testbit_spec: forall k1 k2, (forall n, testbit k1 n = testbit k2 n) -> k1 = k2. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 99 | 
| 
	Axiom interp_spec: forall m n, is_mask m n -> forall p, testbit (interp m) p = true <-> (p < n)%nat. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 100 | 
| 
	Axiom land_spec: forall n k1 k2, testbit (land k1 k2) n = testbit k1 n && testbit k2 n. | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 101 | 
| 
	Axiom lxor_spec: forall n k1 k2, testbit (lxor k1 k2) n = xorb (testbit k1 n) (testbit k2 n). | 
	Lia Cdcl.Coqlib | 
	fbesson-itauto/theories/Patricia | 
	fbesson-itauto | 102 | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
