Datasets:
				
			
			
	
			
			
	
		Languages:
	
	
	
		
	
	English
	
	
	Size:
	
	
	
	
	10K - 100K
	
	
	Tags:
	
	
	
	
	sarcasm
	
	
	
	
	sarcasm-detection
	
	
	
	
	mulitmodal-sarcasm-detection
	
	
	
	
	sarcasm detection
	
	
	
	
	multimodao sarcasm detection
	
	
	
	
	tweets
	
	
	DOI:
	
	
	
	
	
	
	
	
License:
	
	
	
	
	
	
	
| language: | |
| - en | |
| license: unknown | |
| size_categories: | |
| - 10K<n<100K | |
| task_categories: | |
| - feature-extraction | |
| - text-classification | |
| - image-classification | |
| - image-feature-extraction | |
| - zero-shot-classification | |
| - zero-shot-image-classification | |
| pretty_name: multimodal-sarcasm-dataset | |
| tags: | |
| - sarcasm | |
| - sarcasm-detection | |
| - mulitmodal-sarcasm-detection | |
| - sarcasm detection | |
| - multimodao sarcasm detection | |
| - tweets | |
| dataset_info: | |
| - config_name: mmsd-clean | |
| features: | |
| - name: image | |
| dtype: image | |
| - name: text | |
| dtype: string | |
| - name: label | |
| dtype: int64 | |
| - name: id | |
| dtype: string | |
| splits: | |
| - name: train | |
| num_bytes: 1797951865.232 | |
| num_examples: 19557 | |
| - name: validation | |
| num_bytes: 259504817.817 | |
| num_examples: 2387 | |
| - name: test | |
| num_bytes: 261609842.749 | |
| num_examples: 2373 | |
| download_size: 2668004199 | |
| dataset_size: 2319066525.798 | |
| - config_name: mmsd-original | |
| features: | |
| - name: image | |
| dtype: image | |
| - name: text | |
| dtype: string | |
| - name: label | |
| dtype: int64 | |
| - name: id | |
| dtype: string | |
| splits: | |
| - name: train | |
| num_bytes: 1816845826.384 | |
| num_examples: 19816 | |
| - name: validation | |
| num_bytes: 260077790.0 | |
| num_examples: 2410 | |
| - name: test | |
| num_bytes: 262679920.717 | |
| num_examples: 2409 | |
| download_size: 2690517598 | |
| dataset_size: 2339603537.101 | |
| - config_name: mmsd-v1 | |
| features: | |
| - name: image | |
| dtype: image | |
| - name: text | |
| dtype: string | |
| - name: label | |
| dtype: int64 | |
| - name: id | |
| dtype: string | |
| splits: | |
| - name: train | |
| num_bytes: 1816845826.384 | |
| num_examples: 19816 | |
| - name: validation | |
| num_bytes: 260077790.0 | |
| num_examples: 2410 | |
| - name: test | |
| num_bytes: 262679920.717 | |
| num_examples: 2409 | |
| download_size: 2690517598 | |
| dataset_size: 2339603537.101 | |
| - config_name: mmsd-v2 | |
| features: | |
| - name: image | |
| dtype: image | |
| - name: text | |
| dtype: string | |
| - name: label | |
| dtype: int64 | |
| - name: id | |
| dtype: string | |
| splits: | |
| - name: train | |
| num_bytes: 1816541209.384 | |
| num_examples: 19816 | |
| - name: validation | |
| num_bytes: 260043003.0 | |
| num_examples: 2410 | |
| - name: test | |
| num_bytes: 262641462.717 | |
| num_examples: 2409 | |
| download_size: 2690267623 | |
| dataset_size: 2339225675.101 | |
| configs: | |
| - config_name: mmsd-clean | |
| data_files: | |
| - split: train | |
| path: mmsd-clean/train-* | |
| - split: validation | |
| path: mmsd-clean/validation-* | |
| - split: test | |
| path: mmsd-clean/test-* | |
| - config_name: mmsd-original | |
| data_files: | |
| - split: train | |
| path: mmsd-original/train-* | |
| - split: validation | |
| path: mmsd-original/validation-* | |
| - split: test | |
| path: mmsd-original/test-* | |
| - config_name: mmsd-v1 | |
| data_files: | |
| - split: train | |
| path: mmsd-v1/train-* | |
| - split: validation | |
| path: mmsd-v1/validation-* | |
| - split: test | |
| path: mmsd-v1/test-* | |
| - config_name: mmsd-v2 | |
| data_files: | |
| - split: train | |
| path: mmsd-v2/train-* | |
| - split: validation | |
| path: mmsd-v2/validation-* | |
| - split: test | |
| path: mmsd-v2/test-* | |
| # MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System | |
| This is a copy of the dataset uploaded on Hugging Face for easy access. The original data comes from this [work](https://aclanthology.org/2023.findings-acl.689/), which is an improvement upon a [previous study](https://aclanthology.org/P19-1239). | |
| ## Usage | |
| ```python | |
| from typing import TypedDict, cast | |
| import pytorch_lightning as pl | |
| from datasets import Dataset, load_dataset | |
| from torch import Tensor | |
| from torch.utils.data import DataLoader | |
| from transformers import CLIPProcessor | |
| class MMSDModelInput(TypedDict): | |
| pixel_values: Tensor | |
| input_ids: Tensor | |
| attention_mask: Tensor | |
| label: Tensor | |
| id: list[str] | |
| class MMSDDatasetModule(pl.LightningDataModule): | |
| def __init__( | |
| self, | |
| clip_ckpt_name: str = "openai/clip-vit-base-patch32", | |
| dataset_version: str = "mmsd-v2", | |
| max_length: int = 77, | |
| train_batch_size: int = 32, | |
| val_batch_size: int = 32, | |
| test_batch_size: int = 32, | |
| num_workers: int = 19, | |
| ) -> None: | |
| super().__init__() | |
| self.clip_ckpt_name = clip_ckpt_name | |
| self.dataset_version = dataset_version | |
| self.train_batch_size = train_batch_size | |
| self.val_batch_size = val_batch_size | |
| self.test_batch_size = test_batch_size | |
| self.num_workers = num_workers | |
| self.max_length = max_length | |
| def setup(self, stage: str) -> None: | |
| processor = CLIPProcessor.from_pretrained(self.clip_ckpt_name) | |
| def preprocess(example): | |
| inputs = processor( | |
| text=example["text"], | |
| images=example["image"], | |
| return_tensors="pt", | |
| padding="max_length", | |
| truncation=True, | |
| max_length=self.max_length, | |
| ) | |
| return { | |
| "pixel_values": inputs["pixel_values"], | |
| "input_ids": inputs["input_ids"], | |
| "attention_mask": inputs["attention_mask"], | |
| "label": example["label"], | |
| } | |
| self.raw_dataset = cast( | |
| Dataset, | |
| load_dataset("coderchen01/MMSD2.0", name=self.dataset_version), | |
| ) | |
| self.dataset = self.raw_dataset.map( | |
| preprocess, | |
| batched=True, | |
| remove_columns=["text", "image"], | |
| ) | |
| def train_dataloader(self) -> DataLoader: | |
| return DataLoader( | |
| self.dataset["train"], | |
| batch_size=self.train_batch_size, | |
| shuffle=True, | |
| num_workers=self.num_workers, | |
| ) | |
| def val_dataloader(self) -> DataLoader: | |
| return DataLoader( | |
| self.dataset["validation"], | |
| batch_size=self.val_batch_size, | |
| num_workers=self.num_workers, | |
| ) | |
| def test_dataloader(self) -> DataLoader: | |
| return DataLoader( | |
| self.dataset["test"], | |
| batch_size=self.test_batch_size, | |
| num_workers=self.num_workers, | |
| ) | |
| ``` | |
| ## References | |
| [1] Yitao Cai, Huiyu Cai, and Xiaojun Wan. 2019. Multi-Modal Sarcasm Detection in Twitter with Hierarchical Fusion Model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2506–2515, Florence, Italy. Association for Computational Linguistics. | |
| [2] Libo Qin, Shijue Huang, Qiguang Chen, Chenran Cai, Yudi Zhang, Bin Liang, Wanxiang Che, and Ruifeng Xu. 2023. MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System. In Findings of the Association for Computational Linguistics: ACL 2023, pages 10834–10845, Toronto, Canada. Association for Computational Linguistics. | |