| identifier
				 stringlengths 7 18 | space
				 stringclasses 4
				values | uid
				 stringlengths 1 6 | arch_str
				 stringlengths 1 32 | input
				 stringlengths 8.51k 461k | target_metric
				 stringclasses 1
				value | val_accuracy
				 float64 0 95.1 | flops
				 float64 31.1M 14.7B | params
				 float64 227k 50M | metadata
				 stringlengths 0 1.46k | metainformation
				 stringclasses 1
				value | 
|---|---|---|---|---|---|---|---|---|---|---|
| 
	FBNet_4924 | 
	FBNet | 
	4924 | 
	4924 | 
	graph main_graph (
  %input.1[FLOAT, 1x3x32x32]
  %fc.weight[FLOAT, 100x1504]
  %fc.bias[FLOAT, 100]
  %onnx::Conv_703[FLOAT, 16x3x3x3]
  %onnx::Conv_704[FLOAT, 16]
  %onnx::Conv_706[FLOAT, 16x8x1x1]
  %onnx::Conv_709[FLOAT, 16x1x5x5]
  %onnx::Conv_712[FLOAT, 16x8x1x1]
  %onnx::Conv_715[FLOAT, 96x16x1x1]
  %onnx::Conv_716[FLOAT, 96]
  %onnx::Conv_718[FLOAT, 96x1x3x3]
  %onnx::Conv_721[FLOAT, 24x96x1x1]
  %onnx::Conv_722[FLOAT, 24]
  %onnx::Conv_724[FLOAT, 24x12x1x1]
  %onnx::Conv_727[FLOAT, 24x1x5x5]
  %onnx::Conv_730[FLOAT, 24x12x1x1]
  %onnx::Conv_733[FLOAT, 24x24x1x1]
  %onnx::Conv_736[FLOAT, 24x1x3x3]
  %onnx::Conv_739[FLOAT, 24x24x1x1]
  %onnx::Conv_742[FLOAT, 24x12x1x1]
  %onnx::Conv_745[FLOAT, 24x1x3x3]
  %onnx::Conv_748[FLOAT, 24x12x1x1]
  %onnx::Conv_751[FLOAT, 24x12x1x1]
  %onnx::Conv_754[FLOAT, 24x1x3x3]
  %onnx::Conv_757[FLOAT, 32x12x1x1]
  %onnx::Conv_758[FLOAT, 32]
  %onnx::Conv_760[FLOAT, 96x32x1x1]
  %onnx::Conv_763[FLOAT, 96x1x5x5]
  %onnx::Conv_766[FLOAT, 32x96x1x1]
  %onnx::Conv_769[FLOAT, 192x32x1x1]
  %onnx::Conv_770[FLOAT, 192]
  %onnx::Conv_772[FLOAT, 192x1x5x5]
  %onnx::Conv_775[FLOAT, 32x192x1x1]
  %onnx::Conv_778[FLOAT, 192x32x1x1]
  %onnx::Conv_781[FLOAT, 192x1x5x5]
  %onnx::Conv_784[FLOAT, 32x192x1x1]
  %onnx::Conv_787[FLOAT, 32x32x1x1]
  %onnx::Conv_790[FLOAT, 32x1x5x5]
  %onnx::Conv_793[FLOAT, 64x32x1x1]
  %onnx::Conv_794[FLOAT, 64]
  %onnx::Conv_796[FLOAT, 64x32x1x1]
  %onnx::Conv_799[FLOAT, 64x1x3x3]
  %onnx::Conv_802[FLOAT, 64x32x1x1]
  %onnx::Conv_805[FLOAT, 384x64x1x1]
  %onnx::Conv_806[FLOAT, 384]
  %onnx::Conv_808[FLOAT, 384x1x3x3]
  %onnx::Conv_811[FLOAT, 64x384x1x1]
  %onnx::Conv_814[FLOAT, 192x64x1x1]
  %onnx::Conv_817[FLOAT, 192x1x3x3]
  %onnx::Conv_820[FLOAT, 64x192x1x1]
  %onnx::Conv_823[FLOAT, 64x32x1x1]
  %onnx::Conv_826[FLOAT, 64x1x3x3]
  %onnx::Conv_829[FLOAT, 112x32x1x1]
  %onnx::Conv_830[FLOAT, 112]
  %onnx::Conv_832[FLOAT, 672x112x1x1]
  %onnx::Conv_833[FLOAT, 672]
  %onnx::Conv_835[FLOAT, 672x1x5x5]
  %onnx::Conv_838[FLOAT, 112x672x1x1]
  %onnx::Conv_841[FLOAT, 336x112x1x1]
  %onnx::Conv_842[FLOAT, 336]
  %onnx::Conv_844[FLOAT, 336x1x5x5]
  %onnx::Conv_847[FLOAT, 112x336x1x1]
  %onnx::Conv_850[FLOAT, 672x112x1x1]
  %onnx::Conv_853[FLOAT, 672x1x3x3]
  %onnx::Conv_856[FLOAT, 184x672x1x1]
  %onnx::Conv_857[FLOAT, 184]
  %onnx::Conv_859[FLOAT, 184x184x1x1]
  %onnx::Conv_862[FLOAT, 184x1x3x3]
  %onnx::Conv_865[FLOAT, 184x184x1x1]
  %onnx::Conv_868[FLOAT, 1104x184x1x1]
  %onnx::Conv_869[FLOAT, 1104]
  %onnx::Conv_871[FLOAT, 1104x1x5x5]
  %onnx::Conv_874[FLOAT, 184x1104x1x1]
  %onnx::Conv_877[FLOAT, 552x184x1x1]
  %onnx::Conv_878[FLOAT, 552]
  %onnx::Conv_880[FLOAT, 552x1x5x5]
  %onnx::Conv_883[FLOAT, 184x552x1x1]
  %onnx::Conv_886[FLOAT, 184x184x1x1]
  %onnx::Conv_889[FLOAT, 184x1x5x5]
  %onnx::Conv_892[FLOAT, 352x184x1x1]
  %onnx::Conv_893[FLOAT, 352]
  %onnx::Conv_895[FLOAT, 1504x352x1x1]
  %onnx::Conv_896[FLOAT, 1504]
) {
  %onnx::Conv_890 = Identity(%onnx::Conv_857)
  %onnx::Conv_887 = Identity(%onnx::Conv_857)
  %onnx::Conv_884 = Identity(%onnx::Conv_857)
  %onnx::Conv_881 = Identity(%onnx::Conv_878)
  %onnx::Conv_875 = Identity(%onnx::Conv_857)
  %onnx::Conv_872 = Identity(%onnx::Conv_869)
  %onnx::Conv_866 = Identity(%onnx::Conv_857)
  %onnx::Conv_863 = Identity(%onnx::Conv_857)
  %onnx::Conv_860 = Identity(%onnx::Conv_857)
  %onnx::Conv_854 = Identity(%onnx::Conv_833)
  %onnx::Conv_851 = Identity(%onnx::Conv_833)
  %onnx::Conv_848 = Identity(%onnx::Conv_830)
  %onnx::Conv_845 = Identity(%onnx::Conv_842)
  %onnx::Conv_839 = Identity(%onnx::Conv_830)
  %onnx::Conv_836 = Identity(%onnx::Conv_833)
  %onnx::Conv_827 = Identity(%onnx::Conv_794)
  %onnx::Conv_824 = Identity(%onnx::Conv_794)
  %onnx::Conv_821 = Identity(%onnx::Conv_794)
  %onnx::Conv_818 = Identity(%onnx::Conv_770)
  %onnx::Conv_815 = Identity(%onnx::Conv_770)
  %onnx::Conv_812 = Identity(%onnx::Conv_794)
  %onnx::Conv_809 = Identity(%onnx::Conv_806)
  %onnx::Conv_803 = Identity(%onnx::Conv_794)
  %onnx::Conv_800 = Identity(%onnx::Conv_794)
  %onnx::Conv_797 = Identity(%onnx::Conv_794)
  %onnx::Conv_791 = Identity(%onnx::Conv_758)
  %onnx::Conv_788 = Identity(%onnx::Conv_758)
  %onnx::Conv_785 = Identity(%onnx::Conv_758)
  %onnx::Conv_782 = Identity(%onnx::Conv_770)
  %onnx::Conv_779 = Identity(%onnx::Conv_770)
  %onnx::Conv_776 = Identity(%onnx::Conv_758)
  %onnx::Conv_773 = Identity(%onnx::Conv_770)
  %onnx::Conv_767 = Identity(%onnx::Conv_758)
  %onnx::Conv_764 = Identity(%onnx::Conv_716)
  %onnx::Conv_761 = Identity(%onnx::Conv_716)
  %onnx::Conv_755 = Identity(%onnx::Conv_722)
  %onnx::Conv_752 = Identity(%onnx::Conv_722)
  %onnx::Conv_749 = Identity(%onnx::Conv_722)
  %onnx::Conv_746 = Identity(%onnx::Conv_722)
  %onnx::Conv_743 = Identity(%onnx::Conv_722)
  %onnx::Conv_740 = Identity(%onnx::Conv_722)
  %onnx::Conv_737 = Identity(%onnx::Conv_722)
  %onnx::Conv_734 = Identity(%onnx::Conv_722)
  %onnx::Conv_731 = Identity(%onnx::Conv_722)
  %onnx::Conv_728 = Identity(%onnx::Conv_722)
  %onnx::Conv_725 = Identity(%onnx::Conv_722)
  %onnx::Conv_719 = Identity(%onnx::Conv_716)
  %onnx::Conv_713 = Identity(%onnx::Conv_704)
  %onnx::Conv_710 = Identity(%onnx::Conv_704)
  %onnx::Conv_707 = Identity(%onnx::Conv_704)
  %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_703, %onnx::Conv_704)
  %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0)
  %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_706, %onnx::Conv_707)
  %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0)
  %/cells.0/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.0/shuffle/Reshape_output_0 = Reshape(%/cells.0/nl/Relu_output_0, %/cells.0/shuffle/Constant_output_0)
  %/cells.0/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.0/shuffle/Reshape_output_0)
  %/cells.0/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.0/shuffle/Reshape_1_output_0 = Reshape(%/cells.0/shuffle/Transpose_output_0, %/cells.0/shuffle/Constant_1_output_0)
  %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/shuffle/Reshape_1_output_0, %onnx::Conv_709, %onnx::Conv_710)
  %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0)
  %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_712, %onnx::Conv_713)
  %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0)
  %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_715, %onnx::Conv_716)
  %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0)
  %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_718, %onnx::Conv_719)
  %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0)
  %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_721, %onnx::Conv_722)
  %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_724, %onnx::Conv_725)
  %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0)
  %/cells.2/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.2/shuffle/Reshape_output_0 = Reshape(%/cells.2/nl/Relu_output_0, %/cells.2/shuffle/Constant_output_0)
  %/cells.2/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.2/shuffle/Reshape_output_0)
  %/cells.2/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.2/shuffle/Reshape_1_output_0 = Reshape(%/cells.2/shuffle/Transpose_output_0, %/cells.2/shuffle/Constant_1_output_0)
  %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/shuffle/Reshape_1_output_0, %onnx::Conv_727, %onnx::Conv_728)
  %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0)
  %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_730, %onnx::Conv_731)
  %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0)
  %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_733, %onnx::Conv_734)
  %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0)
  %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_736, %onnx::Conv_737)
  %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0)
  %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_739, %onnx::Conv_740)
  %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0)
  %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_742, %onnx::Conv_743)
  %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0)
  %/cells.4/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.4/shuffle/Reshape_output_0 = Reshape(%/cells.4/nl/Relu_output_0, %/cells.4/shuffle/Constant_output_0)
  %/cells.4/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.4/shuffle/Reshape_output_0)
  %/cells.4/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.4/shuffle/Reshape_1_output_0 = Reshape(%/cells.4/shuffle/Transpose_output_0, %/cells.4/shuffle/Constant_1_output_0)
  %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/shuffle/Reshape_1_output_0, %onnx::Conv_745, %onnx::Conv_746)
  %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0)
  %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_748, %onnx::Conv_749)
  %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0)
  %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_751, %onnx::Conv_752)
  %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0)
  %/cells.5/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.5/shuffle/Reshape_output_0 = Reshape(%/cells.5/nl/Relu_output_0, %/cells.5/shuffle/Constant_output_0)
  %/cells.5/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.5/shuffle/Reshape_output_0)
  %/cells.5/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.5/shuffle/Reshape_1_output_0 = Reshape(%/cells.5/shuffle/Transpose_output_0, %/cells.5/shuffle/Constant_1_output_0)
  %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.5/shuffle/Reshape_1_output_0, %onnx::Conv_754, %onnx::Conv_755)
  %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0)
  %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_757, %onnx::Conv_758)
  %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_760, %onnx::Conv_761)
  %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0)
  %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_763, %onnx::Conv_764)
  %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0)
  %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_766, %onnx::Conv_767)
  %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0)
  %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_769, %onnx::Conv_770)
  %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0)
  %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_772, %onnx::Conv_773)
  %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0)
  %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_775, %onnx::Conv_776)
  %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0)
  %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_778, %onnx::Conv_779)
  %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0)
  %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_781, %onnx::Conv_782)
  %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0)
  %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_784, %onnx::Conv_785)
  %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0)
  %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_787, %onnx::Conv_788)
  %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0)
  %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_790, %onnx::Conv_791)
  %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0)
  %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_793, %onnx::Conv_794)
  %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_796, %onnx::Conv_797)
  %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0)
  %/cells.10/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.10/shuffle/Reshape_output_0 = Reshape(%/cells.10/nl/Relu_output_0, %/cells.10/shuffle/Constant_output_0)
  %/cells.10/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.10/shuffle/Reshape_output_0)
  %/cells.10/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.10/shuffle/Reshape_1_output_0 = Reshape(%/cells.10/shuffle/Transpose_output_0, %/cells.10/shuffle/Constant_1_output_0)
  %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/shuffle/Reshape_1_output_0, %onnx::Conv_799, %onnx::Conv_800)
  %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0)
  %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_802, %onnx::Conv_803)
  %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0)
  %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_805, %onnx::Conv_806)
  %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0)
  %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_808, %onnx::Conv_809)
  %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0)
  %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_811, %onnx::Conv_812)
  %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0)
  %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_814, %onnx::Conv_815)
  %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0)
  %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_817, %onnx::Conv_818)
  %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0)
  %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_820, %onnx::Conv_821)
  %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0)
  %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_823, %onnx::Conv_824)
  %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0)
  %/cells.13/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.13/shuffle/Reshape_output_0 = Reshape(%/cells.13/nl/Relu_output_0, %/cells.13/shuffle/Constant_output_0)
  %/cells.13/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.13/shuffle/Reshape_output_0)
  %/cells.13/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.13/shuffle/Reshape_1_output_0 = Reshape(%/cells.13/shuffle/Transpose_output_0, %/cells.13/shuffle/Constant_1_output_0)
  %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/shuffle/Reshape_1_output_0, %onnx::Conv_826, %onnx::Conv_827)
  %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0)
  %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_829, %onnx::Conv_830)
  %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_832, %onnx::Conv_833)
  %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0)
  %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_835, %onnx::Conv_836)
  %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0)
  %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_838, %onnx::Conv_839)
  %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0)
  %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_841, %onnx::Conv_842)
  %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0)
  %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_844, %onnx::Conv_845)
  %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0)
  %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_847, %onnx::Conv_848)
  %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0)
  %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_850, %onnx::Conv_851)
  %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0)
  %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_853, %onnx::Conv_854)
  %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0)
  %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_856, %onnx::Conv_857)
  %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_859, %onnx::Conv_860)
  %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0)
  %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_862, %onnx::Conv_863)
  %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0)
  %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_865, %onnx::Conv_866)
  %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0)
  %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_868, %onnx::Conv_869)
  %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0)
  %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_871, %onnx::Conv_872)
  %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0)
  %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_874, %onnx::Conv_875)
  %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0)
  %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_877, %onnx::Conv_878)
  %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0)
  %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_880, %onnx::Conv_881)
  %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0)
  %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_883, %onnx::Conv_884)
  %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0)
  %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_886, %onnx::Conv_887)
  %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0)
  %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_889, %onnx::Conv_890)
  %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0)
  %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_892, %onnx::Conv_893)
  %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_895, %onnx::Conv_896)
  %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0)
  %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0)
  %/Constant_output_0 = Constant[value = <Tensor>]()
  %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0)
  %701 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %701
} | 
	val_accuracy | 0 | 74,699,392 | 2,133,052 | 
	{'zcp_synflow': 77.89907159291953, 'zcp_zen': 70.61277770996094, 'zcp_epe_nas': 8.43931636281636, 'zcp_fisher': 0.1565728336572647, 'zcp_flops': 74699392.0, 'zcp_grad_norm': 25.163902282714844, 'zcp_grasp': -0.21435546875, 'zcp_jacov': -16.04736825096067, 'zcp_l2_norm': 663.7222290039062, 'zcp_nwot': 212.2607544191578, 'zcp_params': 2133052.0, 'zcp_plain': -0.004208901897072792, 'zcp_snip': 45.40211486816406, 'lat_1080ti_1': 0.7946235022758369, 'lat_1080ti_32': 0.574152896689911, 'lat_1080ti_64': 0.4586707154750304, 'lat_2080ti_1': 0.779352654819707, 'lat_2080ti_32': 0.6066092407108884, 'lat_2080ti_64': 0.47338807063787386, 'lat_essential_ph_1': 0.2830188679245283, 'lat_eyeriss': 0.5321548420222619, 'lat_fpga': 0.5397935859250536, 'lat_gold_6226': 0.48782888593706814, 'lat_gold_6240': 0.6990712125582299, 'lat_pixel2': 0.391304347826087, 'lat_pixel3': 0.5376971604779908, 'lat_raspi4': 0.5192462042277328, 'lat_samsung_a50': 0.24210526315789474, 'lat_samsung_s7': 0.2125984251968504, 'lat_silver_4114': 0.7296926792064687, 'lat_silver_4210r': 0.7917065008530597, 'lat_titan_rtx_1': 0.7186858811299227, 'lat_titan_rtx_32': 0.6096516822219448, 'lat_titan_rtx_64': 0.5086947516498742, 'lat_titanx_1': 0.3812906585203696, 'lat_titanx_32': 0.532479425782754, 'lat_titanx_64': 0.4939796470085282, 'lat_titanxp_1': 0.6759204755468297, 'lat_titanxp_32': 0.5659464902309068, 'lat_titanxp_64': 0.4655703641864076} | |
| 
	FBNet_4640 | 
	FBNet | 
	4640 | 
	4640 | 
	graph main_graph (
  %input.1[FLOAT, 1x3x32x32]
  %fc.weight[FLOAT, 100x1504]
  %fc.bias[FLOAT, 100]
  %onnx::Conv_696[FLOAT, 16x3x3x3]
  %onnx::Conv_697[FLOAT, 16]
  %onnx::Conv_699[FLOAT, 16x8x1x1]
  %onnx::Conv_702[FLOAT, 16x1x5x5]
  %onnx::Conv_705[FLOAT, 16x8x1x1]
  %onnx::Conv_708[FLOAT, 48x16x1x1]
  %onnx::Conv_709[FLOAT, 48]
  %onnx::Conv_711[FLOAT, 48x1x3x3]
  %onnx::Conv_714[FLOAT, 24x48x1x1]
  %onnx::Conv_715[FLOAT, 24]
  %onnx::Conv_717[FLOAT, 144x24x1x1]
  %onnx::Conv_718[FLOAT, 144]
  %onnx::Conv_720[FLOAT, 144x1x5x5]
  %onnx::Conv_723[FLOAT, 24x144x1x1]
  %onnx::Conv_726[FLOAT, 24x24x1x1]
  %onnx::Conv_729[FLOAT, 24x1x5x5]
  %onnx::Conv_732[FLOAT, 24x24x1x1]
  %onnx::Conv_735[FLOAT, 72x24x1x1]
  %onnx::Conv_736[FLOAT, 72]
  %onnx::Conv_738[FLOAT, 72x1x5x5]
  %onnx::Conv_741[FLOAT, 24x72x1x1]
  %onnx::Conv_744[FLOAT, 24x24x1x1]
  %onnx::Conv_747[FLOAT, 24x1x5x5]
  %onnx::Conv_750[FLOAT, 32x24x1x1]
  %onnx::Conv_751[FLOAT, 32]
  %onnx::Conv_753[FLOAT, 192x32x1x1]
  %onnx::Conv_754[FLOAT, 192]
  %onnx::Conv_756[FLOAT, 192x1x5x5]
  %onnx::Conv_759[FLOAT, 32x192x1x1]
  %onnx::Conv_762[FLOAT, 192x32x1x1]
  %onnx::Conv_765[FLOAT, 192x1x3x3]
  %onnx::Conv_768[FLOAT, 32x192x1x1]
  %onnx::Conv_771[FLOAT, 96x32x1x1]
  %onnx::Conv_772[FLOAT, 96]
  %onnx::Conv_774[FLOAT, 96x1x3x3]
  %onnx::Conv_777[FLOAT, 32x96x1x1]
  %onnx::Conv_780[FLOAT, 192x32x1x1]
  %onnx::Conv_783[FLOAT, 192x1x5x5]
  %onnx::Conv_786[FLOAT, 64x192x1x1]
  %onnx::Conv_787[FLOAT, 64]
  %onnx::Conv_789[FLOAT, 192x64x1x1]
  %onnx::Conv_792[FLOAT, 192x1x3x3]
  %onnx::Conv_795[FLOAT, 64x192x1x1]
  %onnx::Conv_798[FLOAT, 64x64x1x1]
  %onnx::Conv_801[FLOAT, 64x1x5x5]
  %onnx::Conv_804[FLOAT, 64x64x1x1]
  %onnx::Conv_807[FLOAT, 64x32x1x1]
  %onnx::Conv_810[FLOAT, 64x1x5x5]
  %onnx::Conv_813[FLOAT, 64x32x1x1]
  %onnx::Conv_816[FLOAT, 192x64x1x1]
  %onnx::Conv_819[FLOAT, 192x1x3x3]
  %onnx::Conv_822[FLOAT, 112x192x1x1]
  %onnx::Conv_823[FLOAT, 112]
  %onnx::Conv_825[FLOAT, 112x112x1x1]
  %onnx::Conv_828[FLOAT, 112x1x3x3]
  %onnx::Conv_831[FLOAT, 112x112x1x1]
  %onnx::Conv_834[FLOAT, 112x56x1x1]
  %onnx::Conv_837[FLOAT, 112x1x5x5]
  %onnx::Conv_840[FLOAT, 112x56x1x1]
  %onnx::Conv_843[FLOAT, 112x56x1x1]
  %onnx::Conv_846[FLOAT, 112x1x5x5]
  %onnx::Conv_849[FLOAT, 112x56x1x1]
  %onnx::Conv_852[FLOAT, 336x112x1x1]
  %onnx::Conv_853[FLOAT, 336]
  %onnx::Conv_855[FLOAT, 336x1x3x3]
  %onnx::Conv_858[FLOAT, 184x336x1x1]
  %onnx::Conv_859[FLOAT, 184]
  %onnx::Conv_861[FLOAT, 184x92x1x1]
  %onnx::Conv_864[FLOAT, 184x1x3x3]
  %onnx::Conv_867[FLOAT, 184x92x1x1]
  %onnx::Conv_870[FLOAT, 1104x184x1x1]
  %onnx::Conv_871[FLOAT, 1104]
  %onnx::Conv_873[FLOAT, 1104x1x3x3]
  %onnx::Conv_876[FLOAT, 184x1104x1x1]
  %onnx::Conv_879[FLOAT, 1104x184x1x1]
  %onnx::Conv_882[FLOAT, 1104x1x5x5]
  %onnx::Conv_885[FLOAT, 184x1104x1x1]
  %onnx::Conv_888[FLOAT, 352x184x1x1]
  %onnx::Conv_889[FLOAT, 352]
  %onnx::Conv_891[FLOAT, 1504x352x1x1]
  %onnx::Conv_892[FLOAT, 1504]
) {
  %onnx::Conv_886 = Identity(%onnx::Conv_859)
  %onnx::Conv_883 = Identity(%onnx::Conv_871)
  %onnx::Conv_880 = Identity(%onnx::Conv_871)
  %onnx::Conv_877 = Identity(%onnx::Conv_859)
  %onnx::Conv_874 = Identity(%onnx::Conv_871)
  %onnx::Conv_868 = Identity(%onnx::Conv_859)
  %onnx::Conv_865 = Identity(%onnx::Conv_859)
  %onnx::Conv_862 = Identity(%onnx::Conv_859)
  %onnx::Conv_856 = Identity(%onnx::Conv_853)
  %onnx::Conv_850 = Identity(%onnx::Conv_823)
  %onnx::Conv_847 = Identity(%onnx::Conv_823)
  %onnx::Conv_844 = Identity(%onnx::Conv_823)
  %onnx::Conv_841 = Identity(%onnx::Conv_823)
  %onnx::Conv_838 = Identity(%onnx::Conv_823)
  %onnx::Conv_835 = Identity(%onnx::Conv_823)
  %onnx::Conv_832 = Identity(%onnx::Conv_823)
  %onnx::Conv_829 = Identity(%onnx::Conv_823)
  %onnx::Conv_826 = Identity(%onnx::Conv_823)
  %onnx::Conv_820 = Identity(%onnx::Conv_754)
  %onnx::Conv_817 = Identity(%onnx::Conv_754)
  %onnx::Conv_814 = Identity(%onnx::Conv_787)
  %onnx::Conv_811 = Identity(%onnx::Conv_787)
  %onnx::Conv_808 = Identity(%onnx::Conv_787)
  %onnx::Conv_805 = Identity(%onnx::Conv_787)
  %onnx::Conv_802 = Identity(%onnx::Conv_787)
  %onnx::Conv_799 = Identity(%onnx::Conv_787)
  %onnx::Conv_796 = Identity(%onnx::Conv_787)
  %onnx::Conv_793 = Identity(%onnx::Conv_754)
  %onnx::Conv_790 = Identity(%onnx::Conv_754)
  %onnx::Conv_784 = Identity(%onnx::Conv_754)
  %onnx::Conv_781 = Identity(%onnx::Conv_754)
  %onnx::Conv_778 = Identity(%onnx::Conv_751)
  %onnx::Conv_775 = Identity(%onnx::Conv_772)
  %onnx::Conv_769 = Identity(%onnx::Conv_751)
  %onnx::Conv_766 = Identity(%onnx::Conv_754)
  %onnx::Conv_763 = Identity(%onnx::Conv_754)
  %onnx::Conv_760 = Identity(%onnx::Conv_751)
  %onnx::Conv_757 = Identity(%onnx::Conv_754)
  %onnx::Conv_748 = Identity(%onnx::Conv_715)
  %onnx::Conv_745 = Identity(%onnx::Conv_715)
  %onnx::Conv_742 = Identity(%onnx::Conv_715)
  %onnx::Conv_739 = Identity(%onnx::Conv_736)
  %onnx::Conv_733 = Identity(%onnx::Conv_715)
  %onnx::Conv_730 = Identity(%onnx::Conv_715)
  %onnx::Conv_727 = Identity(%onnx::Conv_715)
  %onnx::Conv_724 = Identity(%onnx::Conv_715)
  %onnx::Conv_721 = Identity(%onnx::Conv_718)
  %onnx::Conv_712 = Identity(%onnx::Conv_709)
  %onnx::Conv_706 = Identity(%onnx::Conv_697)
  %onnx::Conv_703 = Identity(%onnx::Conv_697)
  %onnx::Conv_700 = Identity(%onnx::Conv_697)
  %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_696, %onnx::Conv_697)
  %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0)
  %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_699, %onnx::Conv_700)
  %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0)
  %/cells.0/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.0/shuffle/Reshape_output_0 = Reshape(%/cells.0/nl/Relu_output_0, %/cells.0/shuffle/Constant_output_0)
  %/cells.0/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.0/shuffle/Reshape_output_0)
  %/cells.0/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.0/shuffle/Reshape_1_output_0 = Reshape(%/cells.0/shuffle/Transpose_output_0, %/cells.0/shuffle/Constant_1_output_0)
  %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/shuffle/Reshape_1_output_0, %onnx::Conv_702, %onnx::Conv_703)
  %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0)
  %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_705, %onnx::Conv_706)
  %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0)
  %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_708, %onnx::Conv_709)
  %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0)
  %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_711, %onnx::Conv_712)
  %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0)
  %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_714, %onnx::Conv_715)
  %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_717, %onnx::Conv_718)
  %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0)
  %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_720, %onnx::Conv_721)
  %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0)
  %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_723, %onnx::Conv_724)
  %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0)
  %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_726, %onnx::Conv_727)
  %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0)
  %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_729, %onnx::Conv_730)
  %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0)
  %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_732, %onnx::Conv_733)
  %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0)
  %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_735, %onnx::Conv_736)
  %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0)
  %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_738, %onnx::Conv_739)
  %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0)
  %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_741, %onnx::Conv_742)
  %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0)
  %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_744, %onnx::Conv_745)
  %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0)
  %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_747, %onnx::Conv_748)
  %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0)
  %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_750, %onnx::Conv_751)
  %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_753, %onnx::Conv_754)
  %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0)
  %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_756, %onnx::Conv_757)
  %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0)
  %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_759, %onnx::Conv_760)
  %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0)
  %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_762, %onnx::Conv_763)
  %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0)
  %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_765, %onnx::Conv_766)
  %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0)
  %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_768, %onnx::Conv_769)
  %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0)
  %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_771, %onnx::Conv_772)
  %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0)
  %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_774, %onnx::Conv_775)
  %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0)
  %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_777, %onnx::Conv_778)
  %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0)
  %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_780, %onnx::Conv_781)
  %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0)
  %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_783, %onnx::Conv_784)
  %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0)
  %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_786, %onnx::Conv_787)
  %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_789, %onnx::Conv_790)
  %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0)
  %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_792, %onnx::Conv_793)
  %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0)
  %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_795, %onnx::Conv_796)
  %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0)
  %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_798, %onnx::Conv_799)
  %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0)
  %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_801, %onnx::Conv_802)
  %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0)
  %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_804, %onnx::Conv_805)
  %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0)
  %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_807, %onnx::Conv_808)
  %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0)
  %/cells.12/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.12/shuffle/Reshape_output_0 = Reshape(%/cells.12/nl/Relu_output_0, %/cells.12/shuffle/Constant_output_0)
  %/cells.12/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.12/shuffle/Reshape_output_0)
  %/cells.12/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.12/shuffle/Reshape_1_output_0 = Reshape(%/cells.12/shuffle/Transpose_output_0, %/cells.12/shuffle/Constant_1_output_0)
  %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.12/shuffle/Reshape_1_output_0, %onnx::Conv_810, %onnx::Conv_811)
  %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0)
  %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_813, %onnx::Conv_814)
  %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0)
  %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_816, %onnx::Conv_817)
  %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0)
  %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_819, %onnx::Conv_820)
  %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0)
  %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_822, %onnx::Conv_823)
  %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_825, %onnx::Conv_826)
  %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0)
  %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_828, %onnx::Conv_829)
  %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0)
  %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_831, %onnx::Conv_832)
  %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0)
  %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_834, %onnx::Conv_835)
  %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0)
  %/cells.15/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.15/shuffle/Reshape_output_0 = Reshape(%/cells.15/nl/Relu_output_0, %/cells.15/shuffle/Constant_output_0)
  %/cells.15/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.15/shuffle/Reshape_output_0)
  %/cells.15/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.15/shuffle/Reshape_1_output_0 = Reshape(%/cells.15/shuffle/Transpose_output_0, %/cells.15/shuffle/Constant_1_output_0)
  %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/shuffle/Reshape_1_output_0, %onnx::Conv_837, %onnx::Conv_838)
  %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0)
  %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_840, %onnx::Conv_841)
  %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0)
  %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_843, %onnx::Conv_844)
  %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0)
  %/cells.16/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.16/shuffle/Reshape_output_0 = Reshape(%/cells.16/nl/Relu_output_0, %/cells.16/shuffle/Constant_output_0)
  %/cells.16/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.16/shuffle/Reshape_output_0)
  %/cells.16/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.16/shuffle/Reshape_1_output_0 = Reshape(%/cells.16/shuffle/Transpose_output_0, %/cells.16/shuffle/Constant_1_output_0)
  %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/shuffle/Reshape_1_output_0, %onnx::Conv_846, %onnx::Conv_847)
  %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0)
  %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_849, %onnx::Conv_850)
  %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0)
  %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_852, %onnx::Conv_853)
  %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0)
  %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_855, %onnx::Conv_856)
  %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0)
  %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_858, %onnx::Conv_859)
  %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_861, %onnx::Conv_862)
  %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0)
  %/cells.18/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.18/shuffle/Reshape_output_0 = Reshape(%/cells.18/nl/Relu_output_0, %/cells.18/shuffle/Constant_output_0)
  %/cells.18/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.18/shuffle/Reshape_output_0)
  %/cells.18/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.18/shuffle/Reshape_1_output_0 = Reshape(%/cells.18/shuffle/Transpose_output_0, %/cells.18/shuffle/Constant_1_output_0)
  %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/shuffle/Reshape_1_output_0, %onnx::Conv_864, %onnx::Conv_865)
  %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0)
  %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_867, %onnx::Conv_868)
  %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0)
  %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_870, %onnx::Conv_871)
  %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0)
  %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_873, %onnx::Conv_874)
  %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0)
  %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_876, %onnx::Conv_877)
  %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0)
  %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_879, %onnx::Conv_880)
  %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0)
  %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_882, %onnx::Conv_883)
  %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0)
  %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_885, %onnx::Conv_886)
  %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0)
  %/cells.21/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_888, %onnx::Conv_889)
  %/cells.21/relu/Relu_output_0 = Relu(%/cells.21/conv/Conv_output_0)
  %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/relu/Relu_output_0, %onnx::Conv_891, %onnx::Conv_892)
  %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0)
  %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0)
  %/Constant_output_0 = Constant[value = <Tensor>]()
  %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0)
  %694 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %694
} | 
	val_accuracy | 0 | 74,147,456 | 1,976,500 | 
	{'zcp_synflow': 82.59762280741629, 'zcp_zen': 72.37373352050781, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.11599140614271164, 'zcp_flops': 74147456.0, 'zcp_grad_norm': 24.32544708251953, 'zcp_grasp': -0.08461380004882812, 'zcp_jacov': -16.04951288826483, 'zcp_l2_norm': 650.794921875, 'zcp_nwot': 214.76886286948437, 'zcp_params': 1976500.0, 'zcp_plain': -0.001490537659265101, 'zcp_snip': 47.130584716796875, 'lat_1080ti_1': 0.7197781611956146, 'lat_1080ti_32': 0.7480503063374878, 'lat_1080ti_64': 0.6316644611504854, 'lat_2080ti_1': 0.780764410934731, 'lat_2080ti_32': 0.745531791128425, 'lat_2080ti_64': 0.6411566451915212, 'lat_essential_ph_1': 0.2641509433962264, 'lat_eyeriss': 0.5737626758109768, 'lat_fpga': 0.49072324087909036, 'lat_gold_6226': 0.40205645528429423, 'lat_gold_6240': 0.5983768624378739, 'lat_pixel2': 0.3695652173913043, 'lat_pixel3': 0.5674410375133463, 'lat_raspi4': 0.5779333224345372, 'lat_samsung_a50': 0.23157894736842105, 'lat_samsung_s7': 0.14960629921259844, 'lat_silver_4114': 0.6548423230971923, 'lat_silver_4210r': 0.7349723521402465, 'lat_titan_rtx_1': 0.7309087171264346, 'lat_titan_rtx_32': 0.7363421158819502, 'lat_titan_rtx_64': 0.6656129822248834, 'lat_titanx_1': 0.38801358319458057, 'lat_titanx_32': 0.6921988186917651, 'lat_titanx_64': 0.665626935149572, 'lat_titanxp_1': 0.6785635395320547, 'lat_titanxp_32': 0.7195684729452241, 'lat_titanxp_64': 0.641702988507132} | |
| 
	FBNet_4889 | 
	FBNet | 
	4889 | 
	4889 | 
	graph main_graph (
  %input.1[FLOAT, 1x3x32x32]
  %fc.weight[FLOAT, 100x1504]
  %fc.bias[FLOAT, 100]
  %onnx::Conv_630[FLOAT, 16x3x3x3]
  %onnx::Conv_631[FLOAT, 16]
  %onnx::Conv_633[FLOAT, 48x16x1x1]
  %onnx::Conv_634[FLOAT, 48]
  %onnx::Conv_636[FLOAT, 48x1x3x3]
  %onnx::Conv_639[FLOAT, 24x48x1x1]
  %onnx::Conv_640[FLOAT, 24]
  %onnx::Conv_642[FLOAT, 72x24x1x1]
  %onnx::Conv_643[FLOAT, 72]
  %onnx::Conv_645[FLOAT, 72x1x3x3]
  %onnx::Conv_648[FLOAT, 24x72x1x1]
  %onnx::Conv_651[FLOAT, 24x24x1x1]
  %onnx::Conv_654[FLOAT, 24x1x5x5]
  %onnx::Conv_657[FLOAT, 24x24x1x1]
  %onnx::Conv_660[FLOAT, 144x24x1x1]
  %onnx::Conv_661[FLOAT, 144]
  %onnx::Conv_663[FLOAT, 144x1x3x3]
  %onnx::Conv_666[FLOAT, 24x144x1x1]
  %onnx::Conv_669[FLOAT, 24x24x1x1]
  %onnx::Conv_672[FLOAT, 24x1x3x3]
  %onnx::Conv_675[FLOAT, 32x24x1x1]
  %onnx::Conv_676[FLOAT, 32]
  %onnx::Conv_678[FLOAT, 32x32x1x1]
  %onnx::Conv_681[FLOAT, 32x1x3x3]
  %onnx::Conv_684[FLOAT, 32x32x1x1]
  %onnx::Conv_687[FLOAT, 32x16x1x1]
  %onnx::Conv_690[FLOAT, 32x1x5x5]
  %onnx::Conv_693[FLOAT, 32x16x1x1]
  %onnx::Conv_696[FLOAT, 32x32x1x1]
  %onnx::Conv_699[FLOAT, 32x1x5x5]
  %onnx::Conv_702[FLOAT, 32x32x1x1]
  %onnx::Conv_705[FLOAT, 192x32x1x1]
  %onnx::Conv_706[FLOAT, 192]
  %onnx::Conv_708[FLOAT, 192x1x3x3]
  %onnx::Conv_711[FLOAT, 64x192x1x1]
  %onnx::Conv_712[FLOAT, 64]
  %onnx::Conv_714[FLOAT, 192x64x1x1]
  %onnx::Conv_717[FLOAT, 192x1x5x5]
  %onnx::Conv_720[FLOAT, 64x192x1x1]
  %onnx::Conv_723[FLOAT, 192x64x1x1]
  %onnx::Conv_726[FLOAT, 192x1x3x3]
  %onnx::Conv_729[FLOAT, 64x192x1x1]
  %onnx::Conv_732[FLOAT, 192x64x1x1]
  %onnx::Conv_735[FLOAT, 192x1x3x3]
  %onnx::Conv_738[FLOAT, 64x192x1x1]
  %onnx::Conv_741[FLOAT, 64x32x1x1]
  %onnx::Conv_744[FLOAT, 64x1x3x3]
  %onnx::Conv_747[FLOAT, 112x32x1x1]
  %onnx::Conv_748[FLOAT, 112]
  %onnx::Conv_750[FLOAT, 112x112x1x1]
  %onnx::Conv_753[FLOAT, 112x1x3x3]
  %onnx::Conv_756[FLOAT, 112x112x1x1]
  %onnx::Conv_759[FLOAT, 672x112x1x1]
  %onnx::Conv_760[FLOAT, 672]
  %onnx::Conv_762[FLOAT, 672x1x5x5]
  %onnx::Conv_765[FLOAT, 112x672x1x1]
  %onnx::Conv_768[FLOAT, 336x112x1x1]
  %onnx::Conv_769[FLOAT, 336]
  %onnx::Conv_771[FLOAT, 336x1x5x5]
  %onnx::Conv_774[FLOAT, 112x336x1x1]
  %onnx::Conv_777[FLOAT, 112x112x1x1]
  %onnx::Conv_780[FLOAT, 112x1x3x3]
  %onnx::Conv_783[FLOAT, 184x112x1x1]
  %onnx::Conv_784[FLOAT, 184]
  %onnx::Conv_786[FLOAT, 184x184x1x1]
  %onnx::Conv_789[FLOAT, 184x1x3x3]
  %onnx::Conv_792[FLOAT, 184x184x1x1]
  %onnx::Conv_795[FLOAT, 1104x184x1x1]
  %onnx::Conv_796[FLOAT, 1104]
  %onnx::Conv_798[FLOAT, 1104x1x5x5]
  %onnx::Conv_801[FLOAT, 184x1104x1x1]
  %onnx::Conv_804[FLOAT, 184x184x1x1]
  %onnx::Conv_807[FLOAT, 184x1x3x3]
  %onnx::Conv_810[FLOAT, 184x184x1x1]
  %onnx::Conv_813[FLOAT, 1104x184x1x1]
  %onnx::Conv_816[FLOAT, 1104x1x3x3]
  %onnx::Conv_819[FLOAT, 352x1104x1x1]
  %onnx::Conv_820[FLOAT, 352]
  %onnx::Conv_822[FLOAT, 1504x352x1x1]
  %onnx::Conv_823[FLOAT, 1504]
) {
  %onnx::Conv_817 = Identity(%onnx::Conv_796)
  %onnx::Conv_814 = Identity(%onnx::Conv_796)
  %onnx::Conv_811 = Identity(%onnx::Conv_784)
  %onnx::Conv_808 = Identity(%onnx::Conv_784)
  %onnx::Conv_805 = Identity(%onnx::Conv_784)
  %onnx::Conv_802 = Identity(%onnx::Conv_784)
  %onnx::Conv_799 = Identity(%onnx::Conv_796)
  %onnx::Conv_793 = Identity(%onnx::Conv_784)
  %onnx::Conv_790 = Identity(%onnx::Conv_784)
  %onnx::Conv_787 = Identity(%onnx::Conv_784)
  %onnx::Conv_781 = Identity(%onnx::Conv_748)
  %onnx::Conv_778 = Identity(%onnx::Conv_748)
  %onnx::Conv_775 = Identity(%onnx::Conv_748)
  %onnx::Conv_772 = Identity(%onnx::Conv_769)
  %onnx::Conv_766 = Identity(%onnx::Conv_748)
  %onnx::Conv_763 = Identity(%onnx::Conv_760)
  %onnx::Conv_757 = Identity(%onnx::Conv_748)
  %onnx::Conv_754 = Identity(%onnx::Conv_748)
  %onnx::Conv_751 = Identity(%onnx::Conv_748)
  %onnx::Conv_745 = Identity(%onnx::Conv_712)
  %onnx::Conv_742 = Identity(%onnx::Conv_712)
  %onnx::Conv_739 = Identity(%onnx::Conv_712)
  %onnx::Conv_736 = Identity(%onnx::Conv_706)
  %onnx::Conv_733 = Identity(%onnx::Conv_706)
  %onnx::Conv_730 = Identity(%onnx::Conv_712)
  %onnx::Conv_727 = Identity(%onnx::Conv_706)
  %onnx::Conv_724 = Identity(%onnx::Conv_706)
  %onnx::Conv_721 = Identity(%onnx::Conv_712)
  %onnx::Conv_718 = Identity(%onnx::Conv_706)
  %onnx::Conv_715 = Identity(%onnx::Conv_706)
  %onnx::Conv_709 = Identity(%onnx::Conv_706)
  %onnx::Conv_703 = Identity(%onnx::Conv_676)
  %onnx::Conv_700 = Identity(%onnx::Conv_676)
  %onnx::Conv_697 = Identity(%onnx::Conv_676)
  %onnx::Conv_694 = Identity(%onnx::Conv_676)
  %onnx::Conv_691 = Identity(%onnx::Conv_676)
  %onnx::Conv_688 = Identity(%onnx::Conv_676)
  %onnx::Conv_685 = Identity(%onnx::Conv_676)
  %onnx::Conv_682 = Identity(%onnx::Conv_676)
  %onnx::Conv_679 = Identity(%onnx::Conv_676)
  %onnx::Conv_673 = Identity(%onnx::Conv_640)
  %onnx::Conv_670 = Identity(%onnx::Conv_640)
  %onnx::Conv_667 = Identity(%onnx::Conv_640)
  %onnx::Conv_664 = Identity(%onnx::Conv_661)
  %onnx::Conv_658 = Identity(%onnx::Conv_640)
  %onnx::Conv_655 = Identity(%onnx::Conv_640)
  %onnx::Conv_652 = Identity(%onnx::Conv_640)
  %onnx::Conv_649 = Identity(%onnx::Conv_640)
  %onnx::Conv_646 = Identity(%onnx::Conv_643)
  %onnx::Conv_637 = Identity(%onnx::Conv_634)
  %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_630, %onnx::Conv_631)
  %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0)
  %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_633, %onnx::Conv_634)
  %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0)
  %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_636, %onnx::Conv_637)
  %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0)
  %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_639, %onnx::Conv_640)
  %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_642, %onnx::Conv_643)
  %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0)
  %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_645, %onnx::Conv_646)
  %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0)
  %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_648, %onnx::Conv_649)
  %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0)
  %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_651, %onnx::Conv_652)
  %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0)
  %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_654, %onnx::Conv_655)
  %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0)
  %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_657, %onnx::Conv_658)
  %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0)
  %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_660, %onnx::Conv_661)
  %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0)
  %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_663, %onnx::Conv_664)
  %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0)
  %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_666, %onnx::Conv_667)
  %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0)
  %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_669, %onnx::Conv_670)
  %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0)
  %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_672, %onnx::Conv_673)
  %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0)
  %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_675, %onnx::Conv_676)
  %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_678, %onnx::Conv_679)
  %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0)
  %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_681, %onnx::Conv_682)
  %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0)
  %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_684, %onnx::Conv_685)
  %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0)
  %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_687, %onnx::Conv_688)
  %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0)
  %/cells.7/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.7/shuffle/Reshape_output_0 = Reshape(%/cells.7/nl/Relu_output_0, %/cells.7/shuffle/Constant_output_0)
  %/cells.7/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.7/shuffle/Reshape_output_0)
  %/cells.7/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.7/shuffle/Reshape_1_output_0 = Reshape(%/cells.7/shuffle/Transpose_output_0, %/cells.7/shuffle/Constant_1_output_0)
  %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/shuffle/Reshape_1_output_0, %onnx::Conv_690, %onnx::Conv_691)
  %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0)
  %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_693, %onnx::Conv_694)
  %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0)
  %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_696, %onnx::Conv_697)
  %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0)
  %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_699, %onnx::Conv_700)
  %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0)
  %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_702, %onnx::Conv_703)
  %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0)
  %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_705, %onnx::Conv_706)
  %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0)
  %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_708, %onnx::Conv_709)
  %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0)
  %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_711, %onnx::Conv_712)
  %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_714, %onnx::Conv_715)
  %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0)
  %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_717, %onnx::Conv_718)
  %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0)
  %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_720, %onnx::Conv_721)
  %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0)
  %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_723, %onnx::Conv_724)
  %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0)
  %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_726, %onnx::Conv_727)
  %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0)
  %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_729, %onnx::Conv_730)
  %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0)
  %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_732, %onnx::Conv_733)
  %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0)
  %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_735, %onnx::Conv_736)
  %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0)
  %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_738, %onnx::Conv_739)
  %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0)
  %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_741, %onnx::Conv_742)
  %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0)
  %/cells.13/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.13/shuffle/Reshape_output_0 = Reshape(%/cells.13/nl/Relu_output_0, %/cells.13/shuffle/Constant_output_0)
  %/cells.13/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.13/shuffle/Reshape_output_0)
  %/cells.13/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.13/shuffle/Reshape_1_output_0 = Reshape(%/cells.13/shuffle/Transpose_output_0, %/cells.13/shuffle/Constant_1_output_0)
  %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/shuffle/Reshape_1_output_0, %onnx::Conv_744, %onnx::Conv_745)
  %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0)
  %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_747, %onnx::Conv_748)
  %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_750, %onnx::Conv_751)
  %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0)
  %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_753, %onnx::Conv_754)
  %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0)
  %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_756, %onnx::Conv_757)
  %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0)
  %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_759, %onnx::Conv_760)
  %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0)
  %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_762, %onnx::Conv_763)
  %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0)
  %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_765, %onnx::Conv_766)
  %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0)
  %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_768, %onnx::Conv_769)
  %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0)
  %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_771, %onnx::Conv_772)
  %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0)
  %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_774, %onnx::Conv_775)
  %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0)
  %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_777, %onnx::Conv_778)
  %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0)
  %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_780, %onnx::Conv_781)
  %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0)
  %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_783, %onnx::Conv_784)
  %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_786, %onnx::Conv_787)
  %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0)
  %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_789, %onnx::Conv_790)
  %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0)
  %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_792, %onnx::Conv_793)
  %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0)
  %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_795, %onnx::Conv_796)
  %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0)
  %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_798, %onnx::Conv_799)
  %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0)
  %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_801, %onnx::Conv_802)
  %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0)
  %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_804, %onnx::Conv_805)
  %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0)
  %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_807, %onnx::Conv_808)
  %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0)
  %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_810, %onnx::Conv_811)
  %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0)
  %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_813, %onnx::Conv_814)
  %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0)
  %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_816, %onnx::Conv_817)
  %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0)
  %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_819, %onnx::Conv_820)
  %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_822, %onnx::Conv_823)
  %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0)
  %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0)
  %/Constant_output_0 = Constant[value = <Tensor>]()
  %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0)
  %628 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %628
} | 
	val_accuracy | 0 | 77,415,808 | 2,326,476 | 
	{'zcp_synflow': 82.5309040969133, 'zcp_zen': 72.55218505859375, 'zcp_epe_nas': 6.570449287434718, 'zcp_fisher': 0.11501649767160416, 'zcp_flops': 77415808.0, 'zcp_grad_norm': 21.668869018554688, 'zcp_grasp': -0.013709068298339844, 'zcp_jacov': -16.06820386174849, 'zcp_l2_norm': 686.1187133789062, 'zcp_nwot': 212.9461177339475, 'zcp_params': 2326476.0, 'zcp_plain': 0.009781252592802048, 'zcp_snip': 43.24672317504883, 'lat_1080ti_1': 0.6087284230779342, 'lat_1080ti_32': 0.5913488454198659, 'lat_1080ti_64': 0.4550693152131566, 'lat_2080ti_1': 0.6694848726715908, 'lat_2080ti_32': 0.6108998020070059, 'lat_2080ti_64': 0.515208054665073, 'lat_essential_ph_1': 0.24528301886792453, 'lat_eyeriss': 0.5111950562045003, 'lat_fpga': 0.6269604884275521, 'lat_gold_6226': 0.4414121016306257, 'lat_gold_6240': 0.5721433418702853, 'lat_pixel2': 0.5217391304347826, 'lat_pixel3': 0.47760805494618513, 'lat_raspi4': 0.5526392867815173, 'lat_samsung_a50': 0.23157894736842105, 'lat_samsung_s7': 0.2047244094488189, 'lat_silver_4114': 0.6038793078574286, 'lat_silver_4210r': 0.6457988830065116, 'lat_titan_rtx_1': 0.6277712768495664, 'lat_titan_rtx_32': 0.5808068419536232, 'lat_titan_rtx_64': 0.5185219328887671, 'lat_titanx_1': 0.35067955936365103, 'lat_titanx_32': 0.5229746243371428, 'lat_titanx_64': 0.4658335726600207, 'lat_titanxp_1': 0.6065597320533347, 'lat_titanxp_32': 0.5665480511292275, 'lat_titanxp_64': 0.4879097440899573} | |
| 
	FBNet_1744 | 
	FBNet | 
	1744 | 
	1744 | 
	graph main_graph (
  %input.1[FLOAT, 1x3x32x32]
  %fc.weight[FLOAT, 100x1504]
  %fc.bias[FLOAT, 100]
  %onnx::Conv_632[FLOAT, 16x3x3x3]
  %onnx::Conv_633[FLOAT, 16]
  %onnx::Conv_635[FLOAT, 48x16x1x1]
  %onnx::Conv_636[FLOAT, 48]
  %onnx::Conv_638[FLOAT, 48x1x3x3]
  %onnx::Conv_641[FLOAT, 16x48x1x1]
  %onnx::Conv_644[FLOAT, 48x16x1x1]
  %onnx::Conv_647[FLOAT, 48x1x3x3]
  %onnx::Conv_650[FLOAT, 24x48x1x1]
  %onnx::Conv_651[FLOAT, 24]
  %onnx::Conv_653[FLOAT, 72x24x1x1]
  %onnx::Conv_654[FLOAT, 72]
  %onnx::Conv_656[FLOAT, 72x1x5x5]
  %onnx::Conv_659[FLOAT, 24x72x1x1]
  %onnx::Conv_662[FLOAT, 24x24x1x1]
  %onnx::Conv_665[FLOAT, 24x1x3x3]
  %onnx::Conv_668[FLOAT, 24x24x1x1]
  %onnx::Conv_671[FLOAT, 24x12x1x1]
  %onnx::Conv_674[FLOAT, 24x1x3x3]
  %onnx::Conv_677[FLOAT, 24x12x1x1]
  %onnx::Conv_680[FLOAT, 144x24x1x1]
  %onnx::Conv_681[FLOAT, 144]
  %onnx::Conv_683[FLOAT, 144x1x5x5]
  %onnx::Conv_686[FLOAT, 32x144x1x1]
  %onnx::Conv_687[FLOAT, 32]
  %onnx::Conv_689[FLOAT, 192x32x1x1]
  %onnx::Conv_690[FLOAT, 192]
  %onnx::Conv_692[FLOAT, 192x1x5x5]
  %onnx::Conv_695[FLOAT, 32x192x1x1]
  %onnx::Conv_698[FLOAT, 192x32x1x1]
  %onnx::Conv_701[FLOAT, 192x1x5x5]
  %onnx::Conv_704[FLOAT, 32x192x1x1]
  %onnx::Conv_707[FLOAT, 32x32x1x1]
  %onnx::Conv_710[FLOAT, 32x1x5x5]
  %onnx::Conv_713[FLOAT, 32x32x1x1]
  %onnx::Conv_716[FLOAT, 64x32x1x1]
  %onnx::Conv_717[FLOAT, 64]
  %onnx::Conv_719[FLOAT, 192x64x1x1]
  %onnx::Conv_722[FLOAT, 192x1x5x5]
  %onnx::Conv_725[FLOAT, 64x192x1x1]
  %onnx::Conv_728[FLOAT, 192x64x1x1]
  %onnx::Conv_731[FLOAT, 192x1x5x5]
  %onnx::Conv_734[FLOAT, 64x192x1x1]
  %onnx::Conv_737[FLOAT, 192x64x1x1]
  %onnx::Conv_740[FLOAT, 192x1x5x5]
  %onnx::Conv_743[FLOAT, 64x192x1x1]
  %onnx::Conv_746[FLOAT, 384x64x1x1]
  %onnx::Conv_747[FLOAT, 384]
  %onnx::Conv_749[FLOAT, 384x1x3x3]
  %onnx::Conv_752[FLOAT, 112x384x1x1]
  %onnx::Conv_753[FLOAT, 112]
  %onnx::Conv_755[FLOAT, 112x56x1x1]
  %onnx::Conv_758[FLOAT, 112x1x3x3]
  %onnx::Conv_761[FLOAT, 112x56x1x1]
  %onnx::Conv_764[FLOAT, 336x112x1x1]
  %onnx::Conv_765[FLOAT, 336]
  %onnx::Conv_767[FLOAT, 336x1x5x5]
  %onnx::Conv_770[FLOAT, 112x336x1x1]
  %onnx::Conv_773[FLOAT, 112x112x1x1]
  %onnx::Conv_776[FLOAT, 112x1x5x5]
  %onnx::Conv_779[FLOAT, 184x112x1x1]
  %onnx::Conv_780[FLOAT, 184]
  %onnx::Conv_782[FLOAT, 184x184x1x1]
  %onnx::Conv_785[FLOAT, 184x1x3x3]
  %onnx::Conv_788[FLOAT, 184x184x1x1]
  %onnx::Conv_791[FLOAT, 552x184x1x1]
  %onnx::Conv_792[FLOAT, 552]
  %onnx::Conv_794[FLOAT, 552x1x5x5]
  %onnx::Conv_797[FLOAT, 184x552x1x1]
  %onnx::Conv_800[FLOAT, 1104x184x1x1]
  %onnx::Conv_801[FLOAT, 1104]
  %onnx::Conv_803[FLOAT, 1104x1x5x5]
  %onnx::Conv_806[FLOAT, 184x1104x1x1]
  %onnx::Conv_809[FLOAT, 184x92x1x1]
  %onnx::Conv_812[FLOAT, 184x1x5x5]
  %onnx::Conv_815[FLOAT, 352x92x1x1]
  %onnx::Conv_816[FLOAT, 352]
  %onnx::Conv_818[FLOAT, 1504x352x1x1]
  %onnx::Conv_819[FLOAT, 1504]
) {
  %onnx::Conv_813 = Identity(%onnx::Conv_780)
  %onnx::Conv_810 = Identity(%onnx::Conv_780)
  %onnx::Conv_807 = Identity(%onnx::Conv_780)
  %onnx::Conv_804 = Identity(%onnx::Conv_801)
  %onnx::Conv_798 = Identity(%onnx::Conv_780)
  %onnx::Conv_795 = Identity(%onnx::Conv_792)
  %onnx::Conv_789 = Identity(%onnx::Conv_780)
  %onnx::Conv_786 = Identity(%onnx::Conv_780)
  %onnx::Conv_783 = Identity(%onnx::Conv_780)
  %onnx::Conv_777 = Identity(%onnx::Conv_753)
  %onnx::Conv_774 = Identity(%onnx::Conv_753)
  %onnx::Conv_771 = Identity(%onnx::Conv_753)
  %onnx::Conv_768 = Identity(%onnx::Conv_765)
  %onnx::Conv_762 = Identity(%onnx::Conv_753)
  %onnx::Conv_759 = Identity(%onnx::Conv_753)
  %onnx::Conv_756 = Identity(%onnx::Conv_753)
  %onnx::Conv_750 = Identity(%onnx::Conv_747)
  %onnx::Conv_744 = Identity(%onnx::Conv_717)
  %onnx::Conv_741 = Identity(%onnx::Conv_690)
  %onnx::Conv_738 = Identity(%onnx::Conv_690)
  %onnx::Conv_735 = Identity(%onnx::Conv_717)
  %onnx::Conv_732 = Identity(%onnx::Conv_690)
  %onnx::Conv_729 = Identity(%onnx::Conv_690)
  %onnx::Conv_726 = Identity(%onnx::Conv_717)
  %onnx::Conv_723 = Identity(%onnx::Conv_690)
  %onnx::Conv_720 = Identity(%onnx::Conv_690)
  %onnx::Conv_714 = Identity(%onnx::Conv_687)
  %onnx::Conv_711 = Identity(%onnx::Conv_687)
  %onnx::Conv_708 = Identity(%onnx::Conv_687)
  %onnx::Conv_705 = Identity(%onnx::Conv_687)
  %onnx::Conv_702 = Identity(%onnx::Conv_690)
  %onnx::Conv_699 = Identity(%onnx::Conv_690)
  %onnx::Conv_696 = Identity(%onnx::Conv_687)
  %onnx::Conv_693 = Identity(%onnx::Conv_690)
  %onnx::Conv_684 = Identity(%onnx::Conv_681)
  %onnx::Conv_678 = Identity(%onnx::Conv_651)
  %onnx::Conv_675 = Identity(%onnx::Conv_651)
  %onnx::Conv_672 = Identity(%onnx::Conv_651)
  %onnx::Conv_669 = Identity(%onnx::Conv_651)
  %onnx::Conv_666 = Identity(%onnx::Conv_651)
  %onnx::Conv_663 = Identity(%onnx::Conv_651)
  %onnx::Conv_660 = Identity(%onnx::Conv_651)
  %onnx::Conv_657 = Identity(%onnx::Conv_654)
  %onnx::Conv_648 = Identity(%onnx::Conv_636)
  %onnx::Conv_645 = Identity(%onnx::Conv_636)
  %onnx::Conv_642 = Identity(%onnx::Conv_633)
  %onnx::Conv_639 = Identity(%onnx::Conv_636)
  %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_632, %onnx::Conv_633)
  %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0)
  %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_635, %onnx::Conv_636)
  %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0)
  %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639)
  %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0)
  %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_641, %onnx::Conv_642)
  %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0)
  %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_644, %onnx::Conv_645)
  %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0)
  %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 48, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_647, %onnx::Conv_648)
  %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0)
  %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_650, %onnx::Conv_651)
  %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_653, %onnx::Conv_654)
  %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0)
  %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657)
  %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0)
  %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_659, %onnx::Conv_660)
  %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0)
  %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_662, %onnx::Conv_663)
  %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0)
  %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666)
  %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0)
  %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_668, %onnx::Conv_669)
  %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0)
  %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_671, %onnx::Conv_672)
  %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0)
  %/cells.4/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.4/shuffle/Reshape_output_0 = Reshape(%/cells.4/nl/Relu_output_0, %/cells.4/shuffle/Constant_output_0)
  %/cells.4/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.4/shuffle/Reshape_output_0)
  %/cells.4/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.4/shuffle/Reshape_1_output_0 = Reshape(%/cells.4/shuffle/Transpose_output_0, %/cells.4/shuffle/Constant_1_output_0)
  %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/shuffle/Reshape_1_output_0, %onnx::Conv_674, %onnx::Conv_675)
  %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0)
  %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_677, %onnx::Conv_678)
  %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0)
  %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_680, %onnx::Conv_681)
  %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0)
  %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_683, %onnx::Conv_684)
  %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0)
  %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_686, %onnx::Conv_687)
  %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_689, %onnx::Conv_690)
  %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0)
  %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_692, %onnx::Conv_693)
  %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0)
  %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_695, %onnx::Conv_696)
  %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0)
  %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_698, %onnx::Conv_699)
  %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0)
  %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_701, %onnx::Conv_702)
  %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0)
  %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_704, %onnx::Conv_705)
  %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0)
  %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_707, %onnx::Conv_708)
  %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0)
  %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_710, %onnx::Conv_711)
  %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0)
  %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_713, %onnx::Conv_714)
  %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0)
  %/cells.9/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [2, 2]](%/cells.8/Add_output_0, %onnx::Conv_716, %onnx::Conv_717)
  %/cells.9/relu/Relu_output_0 = Relu(%/cells.9/conv/Conv_output_0)
  %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/relu/Relu_output_0, %onnx::Conv_719, %onnx::Conv_720)
  %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0)
  %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_722, %onnx::Conv_723)
  %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0)
  %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_725, %onnx::Conv_726)
  %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/relu/Relu_output_0)
  %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_728, %onnx::Conv_729)
  %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0)
  %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_731, %onnx::Conv_732)
  %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0)
  %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_734, %onnx::Conv_735)
  %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0)
  %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_737, %onnx::Conv_738)
  %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0)
  %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_740, %onnx::Conv_741)
  %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0)
  %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_743, %onnx::Conv_744)
  %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0)
  %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_746, %onnx::Conv_747)
  %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0)
  %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750)
  %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0)
  %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753)
  %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_755, %onnx::Conv_756)
  %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0)
  %/cells.14/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.14/shuffle/Reshape_output_0 = Reshape(%/cells.14/nl/Relu_output_0, %/cells.14/shuffle/Constant_output_0)
  %/cells.14/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.14/shuffle/Reshape_output_0)
  %/cells.14/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.14/shuffle/Reshape_1_output_0 = Reshape(%/cells.14/shuffle/Transpose_output_0, %/cells.14/shuffle/Constant_1_output_0)
  %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.14/shuffle/Reshape_1_output_0, %onnx::Conv_758, %onnx::Conv_759)
  %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0)
  %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762)
  %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0)
  %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_764, %onnx::Conv_765)
  %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0)
  %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768)
  %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0)
  %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771)
  %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.14/Add_output_0)
  %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_773, %onnx::Conv_774)
  %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0)
  %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777)
  %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0)
  %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780)
  %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_782, %onnx::Conv_783)
  %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0)
  %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786)
  %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0)
  %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789)
  %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0)
  %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_791, %onnx::Conv_792)
  %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0)
  %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795)
  %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0)
  %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_797, %onnx::Conv_798)
  %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0)
  %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_800, %onnx::Conv_801)
  %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0)
  %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_803, %onnx::Conv_804)
  %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0)
  %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_806, %onnx::Conv_807)
  %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0)
  %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_809, %onnx::Conv_810)
  %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0)
  %/cells.21/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.21/shuffle/Reshape_output_0 = Reshape(%/cells.21/nl/Relu_output_0, %/cells.21/shuffle/Constant_output_0)
  %/cells.21/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.21/shuffle/Reshape_output_0)
  %/cells.21/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.21/shuffle/Reshape_1_output_0 = Reshape(%/cells.21/shuffle/Transpose_output_0, %/cells.21/shuffle/Constant_1_output_0)
  %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.21/shuffle/Reshape_1_output_0, %onnx::Conv_812, %onnx::Conv_813)
  %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0)
  %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_815, %onnx::Conv_816)
  %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_818, %onnx::Conv_819)
  %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0)
  %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0)
  %/Constant_output_0 = Constant[value = <Tensor>]()
  %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0)
  %630 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %630
} | 
	val_accuracy | 0 | 69,532,800 | 1,833,396 | 
	{'zcp_synflow': 81.00151682552332, 'zcp_zen': 70.72832489013672, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.16060179471969604, 'zcp_flops': 69532800.0, 'zcp_grad_norm': 25.518957138061523, 'zcp_grasp': -0.7189178466796875, 'zcp_jacov': -16.054173817441924, 'zcp_l2_norm': 641.1897583007812, 'zcp_nwot': 213.6309817729959, 'zcp_params': 1833396.0, 'zcp_plain': 0.004338196944445372, 'zcp_snip': 48.080177307128906, 'lat_1080ti_1': 0.6896371377224065, 'lat_1080ti_32': 0.5158820399888641, 'lat_1080ti_64': 0.4699123657305433, 'lat_2080ti_1': 0.5993238351792396, 'lat_2080ti_32': 0.49608520749113666, 'lat_2080ti_64': 0.4860155876105916, 'lat_essential_ph_1': 0.4528301886792453, 'lat_eyeriss': 0.49997249371939956, 'lat_fpga': 0.45031120434597594, 'lat_gold_6226': 0.3789777949662443, 'lat_gold_6240': 0.5154425784017876, 'lat_pixel2': 0.32608695652173914, 'lat_pixel3': 0.4877994176860392, 'lat_raspi4': 0.4749247401413308, 'lat_samsung_a50': 0.2, 'lat_samsung_s7': 0.2283464566929134, 'lat_silver_4114': 0.5547105095996716, 'lat_silver_4210r': 0.5289520778792325, 'lat_titan_rtx_1': 0.5869892192857065, 'lat_titan_rtx_32': 0.4894397492913472, 'lat_titan_rtx_64': 0.4945278507261771, 'lat_titanx_1': 0.3037606608774482, 'lat_titanx_32': 0.47081678672697347, 'lat_titanx_64': 0.47308709168583607, 'lat_titanxp_1': 0.5375890266443537, 'lat_titanxp_32': 0.5007478207672101, 'lat_titanxp_64': 0.49433553605051983} | |
| 
	FBNet_2118 | 
	FBNet | 
	2118 | 
	2118 | 
	graph main_graph (
  %input.1[FLOAT, 1x3x32x32]
  %fc.weight[FLOAT, 100x1504]
  %fc.bias[FLOAT, 100]
  %onnx::Conv_622[FLOAT, 16x3x3x3]
  %onnx::Conv_623[FLOAT, 16]
  %onnx::Conv_625[FLOAT, 96x16x1x1]
  %onnx::Conv_626[FLOAT, 96]
  %onnx::Conv_628[FLOAT, 96x1x3x3]
  %onnx::Conv_631[FLOAT, 16x96x1x1]
  %onnx::Conv_634[FLOAT, 16x8x1x1]
  %onnx::Conv_637[FLOAT, 16x1x3x3]
  %onnx::Conv_640[FLOAT, 24x8x1x1]
  %onnx::Conv_641[FLOAT, 24]
  %onnx::Conv_643[FLOAT, 24x24x1x1]
  %onnx::Conv_646[FLOAT, 24x1x3x3]
  %onnx::Conv_649[FLOAT, 24x24x1x1]
  %onnx::Conv_652[FLOAT, 72x24x1x1]
  %onnx::Conv_653[FLOAT, 72]
  %onnx::Conv_655[FLOAT, 72x1x3x3]
  %onnx::Conv_658[FLOAT, 24x72x1x1]
  %onnx::Conv_661[FLOAT, 144x24x1x1]
  %onnx::Conv_662[FLOAT, 144]
  %onnx::Conv_664[FLOAT, 144x1x3x3]
  %onnx::Conv_667[FLOAT, 24x144x1x1]
  %onnx::Conv_670[FLOAT, 72x24x1x1]
  %onnx::Conv_673[FLOAT, 72x1x5x5]
  %onnx::Conv_676[FLOAT, 32x72x1x1]
  %onnx::Conv_677[FLOAT, 32]
  %onnx::Conv_679[FLOAT, 32x32x1x1]
  %onnx::Conv_682[FLOAT, 32x1x5x5]
  %onnx::Conv_685[FLOAT, 32x32x1x1]
  %onnx::Conv_688[FLOAT, 32x32x1x1]
  %onnx::Conv_691[FLOAT, 32x1x3x3]
  %onnx::Conv_694[FLOAT, 32x32x1x1]
  %onnx::Conv_697[FLOAT, 96x32x1x1]
  %onnx::Conv_700[FLOAT, 96x1x5x5]
  %onnx::Conv_703[FLOAT, 64x96x1x1]
  %onnx::Conv_704[FLOAT, 64]
  %onnx::Conv_706[FLOAT, 64x32x1x1]
  %onnx::Conv_709[FLOAT, 64x1x3x3]
  %onnx::Conv_712[FLOAT, 64x32x1x1]
  %onnx::Conv_715[FLOAT, 64x64x1x1]
  %onnx::Conv_718[FLOAT, 64x1x5x5]
  %onnx::Conv_721[FLOAT, 64x64x1x1]
  %onnx::Conv_724[FLOAT, 64x64x1x1]
  %onnx::Conv_727[FLOAT, 64x1x5x5]
  %onnx::Conv_730[FLOAT, 64x64x1x1]
  %onnx::Conv_733[FLOAT, 192x64x1x1]
  %onnx::Conv_734[FLOAT, 192]
  %onnx::Conv_736[FLOAT, 192x1x5x5]
  %onnx::Conv_739[FLOAT, 112x192x1x1]
  %onnx::Conv_740[FLOAT, 112]
  %onnx::Conv_742[FLOAT, 112x112x1x1]
  %onnx::Conv_745[FLOAT, 112x1x5x5]
  %onnx::Conv_748[FLOAT, 112x112x1x1]
  %onnx::Conv_751[FLOAT, 672x112x1x1]
  %onnx::Conv_752[FLOAT, 672]
  %onnx::Conv_754[FLOAT, 672x1x5x5]
  %onnx::Conv_757[FLOAT, 112x672x1x1]
  %onnx::Conv_760[FLOAT, 112x56x1x1]
  %onnx::Conv_763[FLOAT, 112x1x5x5]
  %onnx::Conv_766[FLOAT, 184x56x1x1]
  %onnx::Conv_767[FLOAT, 184]
  %onnx::Conv_769[FLOAT, 184x184x1x1]
  %onnx::Conv_772[FLOAT, 184x1x5x5]
  %onnx::Conv_775[FLOAT, 184x184x1x1]
  %onnx::Conv_778[FLOAT, 552x184x1x1]
  %onnx::Conv_779[FLOAT, 552]
  %onnx::Conv_781[FLOAT, 552x1x3x3]
  %onnx::Conv_784[FLOAT, 184x552x1x1]
  %onnx::Conv_787[FLOAT, 184x184x1x1]
  %onnx::Conv_790[FLOAT, 184x1x5x5]
  %onnx::Conv_793[FLOAT, 184x184x1x1]
  %onnx::Conv_796[FLOAT, 552x184x1x1]
  %onnx::Conv_799[FLOAT, 552x1x5x5]
  %onnx::Conv_802[FLOAT, 352x552x1x1]
  %onnx::Conv_803[FLOAT, 352]
  %onnx::Conv_805[FLOAT, 1504x352x1x1]
  %onnx::Conv_806[FLOAT, 1504]
) {
  %onnx::Conv_800 = Identity(%onnx::Conv_779)
  %onnx::Conv_797 = Identity(%onnx::Conv_779)
  %onnx::Conv_794 = Identity(%onnx::Conv_767)
  %onnx::Conv_791 = Identity(%onnx::Conv_767)
  %onnx::Conv_788 = Identity(%onnx::Conv_767)
  %onnx::Conv_785 = Identity(%onnx::Conv_767)
  %onnx::Conv_782 = Identity(%onnx::Conv_779)
  %onnx::Conv_776 = Identity(%onnx::Conv_767)
  %onnx::Conv_773 = Identity(%onnx::Conv_767)
  %onnx::Conv_770 = Identity(%onnx::Conv_767)
  %onnx::Conv_764 = Identity(%onnx::Conv_740)
  %onnx::Conv_761 = Identity(%onnx::Conv_740)
  %onnx::Conv_758 = Identity(%onnx::Conv_740)
  %onnx::Conv_755 = Identity(%onnx::Conv_752)
  %onnx::Conv_749 = Identity(%onnx::Conv_740)
  %onnx::Conv_746 = Identity(%onnx::Conv_740)
  %onnx::Conv_743 = Identity(%onnx::Conv_740)
  %onnx::Conv_737 = Identity(%onnx::Conv_734)
  %onnx::Conv_731 = Identity(%onnx::Conv_704)
  %onnx::Conv_728 = Identity(%onnx::Conv_704)
  %onnx::Conv_725 = Identity(%onnx::Conv_704)
  %onnx::Conv_722 = Identity(%onnx::Conv_704)
  %onnx::Conv_719 = Identity(%onnx::Conv_704)
  %onnx::Conv_716 = Identity(%onnx::Conv_704)
  %onnx::Conv_713 = Identity(%onnx::Conv_704)
  %onnx::Conv_710 = Identity(%onnx::Conv_704)
  %onnx::Conv_707 = Identity(%onnx::Conv_704)
  %onnx::Conv_701 = Identity(%onnx::Conv_626)
  %onnx::Conv_698 = Identity(%onnx::Conv_626)
  %onnx::Conv_695 = Identity(%onnx::Conv_677)
  %onnx::Conv_692 = Identity(%onnx::Conv_677)
  %onnx::Conv_689 = Identity(%onnx::Conv_677)
  %onnx::Conv_686 = Identity(%onnx::Conv_677)
  %onnx::Conv_683 = Identity(%onnx::Conv_677)
  %onnx::Conv_680 = Identity(%onnx::Conv_677)
  %onnx::Conv_674 = Identity(%onnx::Conv_653)
  %onnx::Conv_671 = Identity(%onnx::Conv_653)
  %onnx::Conv_668 = Identity(%onnx::Conv_641)
  %onnx::Conv_665 = Identity(%onnx::Conv_662)
  %onnx::Conv_659 = Identity(%onnx::Conv_641)
  %onnx::Conv_656 = Identity(%onnx::Conv_653)
  %onnx::Conv_650 = Identity(%onnx::Conv_641)
  %onnx::Conv_647 = Identity(%onnx::Conv_641)
  %onnx::Conv_644 = Identity(%onnx::Conv_641)
  %onnx::Conv_638 = Identity(%onnx::Conv_623)
  %onnx::Conv_635 = Identity(%onnx::Conv_623)
  %onnx::Conv_632 = Identity(%onnx::Conv_623)
  %onnx::Conv_629 = Identity(%onnx::Conv_626)
  %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_622, %onnx::Conv_623)
  %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0)
  %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_625, %onnx::Conv_626)
  %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0)
  %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_628, %onnx::Conv_629)
  %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0)
  %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_631, %onnx::Conv_632)
  %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0)
  %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_634, %onnx::Conv_635)
  %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0)
  %/cells.1/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.1/shuffle/Reshape_output_0 = Reshape(%/cells.1/nl/Relu_output_0, %/cells.1/shuffle/Constant_output_0)
  %/cells.1/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.1/shuffle/Reshape_output_0)
  %/cells.1/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.1/shuffle/Reshape_1_output_0 = Reshape(%/cells.1/shuffle/Transpose_output_0, %/cells.1/shuffle/Constant_1_output_0)
  %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/shuffle/Reshape_1_output_0, %onnx::Conv_637, %onnx::Conv_638)
  %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0)
  %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_640, %onnx::Conv_641)
  %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_643, %onnx::Conv_644)
  %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0)
  %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_646, %onnx::Conv_647)
  %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0)
  %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_649, %onnx::Conv_650)
  %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0)
  %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_652, %onnx::Conv_653)
  %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0)
  %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_655, %onnx::Conv_656)
  %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0)
  %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_658, %onnx::Conv_659)
  %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0)
  %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_661, %onnx::Conv_662)
  %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0)
  %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_664, %onnx::Conv_665)
  %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0)
  %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_667, %onnx::Conv_668)
  %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0)
  %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/Add_output_0, %onnx::Conv_670, %onnx::Conv_671)
  %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0)
  %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_673, %onnx::Conv_674)
  %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0)
  %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_676, %onnx::Conv_677)
  %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_679, %onnx::Conv_680)
  %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0)
  %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_682, %onnx::Conv_683)
  %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0)
  %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_685, %onnx::Conv_686)
  %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0)
  %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_688, %onnx::Conv_689)
  %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0)
  %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_691, %onnx::Conv_692)
  %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0)
  %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_694, %onnx::Conv_695)
  %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0)
  %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_697, %onnx::Conv_698)
  %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0)
  %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_700, %onnx::Conv_701)
  %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0)
  %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_703, %onnx::Conv_704)
  %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_706, %onnx::Conv_707)
  %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0)
  %/cells.10/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.10/shuffle/Reshape_output_0 = Reshape(%/cells.10/nl/Relu_output_0, %/cells.10/shuffle/Constant_output_0)
  %/cells.10/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.10/shuffle/Reshape_output_0)
  %/cells.10/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.10/shuffle/Reshape_1_output_0 = Reshape(%/cells.10/shuffle/Transpose_output_0, %/cells.10/shuffle/Constant_1_output_0)
  %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/shuffle/Reshape_1_output_0, %onnx::Conv_709, %onnx::Conv_710)
  %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0)
  %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_712, %onnx::Conv_713)
  %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0)
  %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_715, %onnx::Conv_716)
  %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0)
  %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_718, %onnx::Conv_719)
  %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0)
  %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_721, %onnx::Conv_722)
  %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0)
  %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_724, %onnx::Conv_725)
  %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0)
  %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.12/nl/Relu_output_0, %onnx::Conv_727, %onnx::Conv_728)
  %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0)
  %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_730, %onnx::Conv_731)
  %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0)
  %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_733, %onnx::Conv_734)
  %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0)
  %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_736, %onnx::Conv_737)
  %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0)
  %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_739, %onnx::Conv_740)
  %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_742, %onnx::Conv_743)
  %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0)
  %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_745, %onnx::Conv_746)
  %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0)
  %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_748, %onnx::Conv_749)
  %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0)
  %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_751, %onnx::Conv_752)
  %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0)
  %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_754, %onnx::Conv_755)
  %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0)
  %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_757, %onnx::Conv_758)
  %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0)
  %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_760, %onnx::Conv_761)
  %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0)
  %/cells.17/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.17/shuffle/Reshape_output_0 = Reshape(%/cells.17/nl/Relu_output_0, %/cells.17/shuffle/Constant_output_0)
  %/cells.17/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.17/shuffle/Reshape_output_0)
  %/cells.17/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.17/shuffle/Reshape_1_output_0 = Reshape(%/cells.17/shuffle/Transpose_output_0, %/cells.17/shuffle/Constant_1_output_0)
  %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.17/shuffle/Reshape_1_output_0, %onnx::Conv_763, %onnx::Conv_764)
  %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0)
  %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_766, %onnx::Conv_767)
  %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_769, %onnx::Conv_770)
  %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0)
  %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_772, %onnx::Conv_773)
  %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0)
  %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_775, %onnx::Conv_776)
  %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0)
  %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_778, %onnx::Conv_779)
  %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0)
  %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_781, %onnx::Conv_782)
  %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0)
  %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_784, %onnx::Conv_785)
  %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0)
  %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_787, %onnx::Conv_788)
  %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0)
  %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_790, %onnx::Conv_791)
  %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0)
  %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_793, %onnx::Conv_794)
  %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0)
  %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_796, %onnx::Conv_797)
  %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0)
  %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 552, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_799, %onnx::Conv_800)
  %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0)
  %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_802, %onnx::Conv_803)
  %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_805, %onnx::Conv_806)
  %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0)
  %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0)
  %/Constant_output_0 = Constant[value = <Tensor>]()
  %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0)
  %620 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %620
} | 
	val_accuracy | 0 | 63,983,488 | 1,681,052 | 
	{'zcp_synflow': 78.4055229454222, 'zcp_zen': 66.96976470947266, 'zcp_epe_nas': 12.399530951803351, 'zcp_fisher': 0.14892186224460602, 'zcp_flops': 63983488.0, 'zcp_grad_norm': 22.675832748413086, 'zcp_grasp': -0.4149608612060547, 'zcp_jacov': -16.07879879224658, 'zcp_l2_norm': 591.436279296875, 'zcp_nwot': 213.24578005421318, 'zcp_params': 1681052.0, 'zcp_plain': 0.004269117955118418, 'zcp_snip': 40.18830490112305, 'lat_1080ti_1': 0.5425106121551576, 'lat_1080ti_32': 0.5641282489078705, 'lat_1080ti_64': 0.48063495225197206, 'lat_2080ti_1': 0.6429827022139064, 'lat_2080ti_32': 0.5538373305544197, 'lat_2080ti_64': 0.5111604739332586, 'lat_essential_ph_1': 0.2641509433962264, 'lat_eyeriss': 0.38138374928942087, 'lat_fpga': 0.4261767878170177, 'lat_gold_6226': 0.23985798199173278, 'lat_gold_6240': 0.36763476741001083, 'lat_pixel2': 0.2391304347826087, 'lat_pixel3': 0.3655350145328767, 'lat_raspi4': 0.4351767242952357, 'lat_samsung_a50': 0.15789473684210525, 'lat_samsung_s7': 0.13385826771653545, 'lat_silver_4114': 0.36841742246032433, 'lat_silver_4210r': 0.37541725798633657, 'lat_titan_rtx_1': 0.5598743300729182, 'lat_titan_rtx_32': 0.5231880303223926, 'lat_titan_rtx_64': 0.5203332997138033, 'lat_titanx_1': 0.2947744190200042, 'lat_titanx_32': 0.5204159847293879, 'lat_titanx_64': 0.46782239863699643, 'lat_titanxp_1': 0.534296094801705, 'lat_titanxp_32': 0.5187910842182968, 'lat_titanxp_64': 0.49476667684052783} | |
| 
	FBNet_3060 | 
	FBNet | 
	3060 | 
	3060 | 
	graph main_graph (
  %input.1[FLOAT, 1x3x32x32]
  %fc.weight[FLOAT, 100x1504]
  %fc.bias[FLOAT, 100]
  %onnx::Conv_614[FLOAT, 16x3x3x3]
  %onnx::Conv_615[FLOAT, 16]
  %onnx::Conv_617[FLOAT, 96x16x1x1]
  %onnx::Conv_618[FLOAT, 96]
  %onnx::Conv_620[FLOAT, 96x1x5x5]
  %onnx::Conv_623[FLOAT, 16x96x1x1]
  %onnx::Conv_626[FLOAT, 16x16x1x1]
  %onnx::Conv_629[FLOAT, 16x1x5x5]
  %onnx::Conv_632[FLOAT, 24x16x1x1]
  %onnx::Conv_633[FLOAT, 24]
  %onnx::Conv_635[FLOAT, 72x24x1x1]
  %onnx::Conv_636[FLOAT, 72]
  %onnx::Conv_638[FLOAT, 72x1x5x5]
  %onnx::Conv_641[FLOAT, 24x72x1x1]
  %onnx::Conv_644[FLOAT, 144x24x1x1]
  %onnx::Conv_645[FLOAT, 144]
  %onnx::Conv_647[FLOAT, 144x1x3x3]
  %onnx::Conv_650[FLOAT, 24x144x1x1]
  %onnx::Conv_653[FLOAT, 24x24x1x1]
  %onnx::Conv_656[FLOAT, 24x1x5x5]
  %onnx::Conv_659[FLOAT, 24x24x1x1]
  %onnx::Conv_662[FLOAT, 32x24x1x1]
  %onnx::Conv_663[FLOAT, 32]
  %onnx::Conv_665[FLOAT, 32x32x1x1]
  %onnx::Conv_668[FLOAT, 32x1x3x3]
  %onnx::Conv_671[FLOAT, 32x32x1x1]
  %onnx::Conv_674[FLOAT, 32x32x1x1]
  %onnx::Conv_677[FLOAT, 32x1x3x3]
  %onnx::Conv_680[FLOAT, 32x32x1x1]
  %onnx::Conv_683[FLOAT, 32x16x1x1]
  %onnx::Conv_686[FLOAT, 32x1x5x5]
  %onnx::Conv_689[FLOAT, 32x16x1x1]
  %onnx::Conv_692[FLOAT, 32x16x1x1]
  %onnx::Conv_695[FLOAT, 32x1x3x3]
  %onnx::Conv_698[FLOAT, 64x16x1x1]
  %onnx::Conv_699[FLOAT, 64]
  %onnx::Conv_701[FLOAT, 384x64x1x1]
  %onnx::Conv_702[FLOAT, 384]
  %onnx::Conv_704[FLOAT, 384x1x5x5]
  %onnx::Conv_707[FLOAT, 64x384x1x1]
  %onnx::Conv_710[FLOAT, 64x64x1x1]
  %onnx::Conv_713[FLOAT, 64x1x5x5]
  %onnx::Conv_716[FLOAT, 64x64x1x1]
  %onnx::Conv_719[FLOAT, 384x64x1x1]
  %onnx::Conv_722[FLOAT, 384x1x5x5]
  %onnx::Conv_725[FLOAT, 112x384x1x1]
  %onnx::Conv_726[FLOAT, 112]
  %onnx::Conv_728[FLOAT, 336x112x1x1]
  %onnx::Conv_729[FLOAT, 336]
  %onnx::Conv_731[FLOAT, 336x1x5x5]
  %onnx::Conv_734[FLOAT, 112x336x1x1]
  %onnx::Conv_737[FLOAT, 672x112x1x1]
  %onnx::Conv_738[FLOAT, 672]
  %onnx::Conv_740[FLOAT, 672x1x5x5]
  %onnx::Conv_743[FLOAT, 112x672x1x1]
  %onnx::Conv_746[FLOAT, 672x112x1x1]
  %onnx::Conv_749[FLOAT, 672x1x5x5]
  %onnx::Conv_752[FLOAT, 112x672x1x1]
  %onnx::Conv_755[FLOAT, 112x56x1x1]
  %onnx::Conv_758[FLOAT, 112x1x3x3]
  %onnx::Conv_761[FLOAT, 184x56x1x1]
  %onnx::Conv_762[FLOAT, 184]
  %onnx::Conv_764[FLOAT, 1104x184x1x1]
  %onnx::Conv_765[FLOAT, 1104]
  %onnx::Conv_767[FLOAT, 1104x1x3x3]
  %onnx::Conv_770[FLOAT, 184x1104x1x1]
  %onnx::Conv_773[FLOAT, 1104x184x1x1]
  %onnx::Conv_776[FLOAT, 1104x1x5x5]
  %onnx::Conv_779[FLOAT, 184x1104x1x1]
  %onnx::Conv_782[FLOAT, 184x184x1x1]
  %onnx::Conv_785[FLOAT, 184x1x3x3]
  %onnx::Conv_788[FLOAT, 184x184x1x1]
  %onnx::Conv_791[FLOAT, 352x184x1x1]
  %onnx::Conv_792[FLOAT, 352]
  %onnx::Conv_794[FLOAT, 1504x352x1x1]
  %onnx::Conv_795[FLOAT, 1504]
) {
  %onnx::Conv_789 = Identity(%onnx::Conv_762)
  %onnx::Conv_786 = Identity(%onnx::Conv_762)
  %onnx::Conv_783 = Identity(%onnx::Conv_762)
  %onnx::Conv_780 = Identity(%onnx::Conv_762)
  %onnx::Conv_777 = Identity(%onnx::Conv_765)
  %onnx::Conv_774 = Identity(%onnx::Conv_765)
  %onnx::Conv_771 = Identity(%onnx::Conv_762)
  %onnx::Conv_768 = Identity(%onnx::Conv_765)
  %onnx::Conv_759 = Identity(%onnx::Conv_726)
  %onnx::Conv_756 = Identity(%onnx::Conv_726)
  %onnx::Conv_753 = Identity(%onnx::Conv_726)
  %onnx::Conv_750 = Identity(%onnx::Conv_738)
  %onnx::Conv_747 = Identity(%onnx::Conv_738)
  %onnx::Conv_744 = Identity(%onnx::Conv_726)
  %onnx::Conv_741 = Identity(%onnx::Conv_738)
  %onnx::Conv_735 = Identity(%onnx::Conv_726)
  %onnx::Conv_732 = Identity(%onnx::Conv_729)
  %onnx::Conv_723 = Identity(%onnx::Conv_702)
  %onnx::Conv_720 = Identity(%onnx::Conv_702)
  %onnx::Conv_717 = Identity(%onnx::Conv_699)
  %onnx::Conv_714 = Identity(%onnx::Conv_699)
  %onnx::Conv_711 = Identity(%onnx::Conv_699)
  %onnx::Conv_708 = Identity(%onnx::Conv_699)
  %onnx::Conv_705 = Identity(%onnx::Conv_702)
  %onnx::Conv_696 = Identity(%onnx::Conv_663)
  %onnx::Conv_693 = Identity(%onnx::Conv_663)
  %onnx::Conv_690 = Identity(%onnx::Conv_663)
  %onnx::Conv_687 = Identity(%onnx::Conv_663)
  %onnx::Conv_684 = Identity(%onnx::Conv_663)
  %onnx::Conv_681 = Identity(%onnx::Conv_663)
  %onnx::Conv_678 = Identity(%onnx::Conv_663)
  %onnx::Conv_675 = Identity(%onnx::Conv_663)
  %onnx::Conv_672 = Identity(%onnx::Conv_663)
  %onnx::Conv_669 = Identity(%onnx::Conv_663)
  %onnx::Conv_666 = Identity(%onnx::Conv_663)
  %onnx::Conv_660 = Identity(%onnx::Conv_633)
  %onnx::Conv_657 = Identity(%onnx::Conv_633)
  %onnx::Conv_654 = Identity(%onnx::Conv_633)
  %onnx::Conv_651 = Identity(%onnx::Conv_633)
  %onnx::Conv_648 = Identity(%onnx::Conv_645)
  %onnx::Conv_642 = Identity(%onnx::Conv_633)
  %onnx::Conv_639 = Identity(%onnx::Conv_636)
  %onnx::Conv_630 = Identity(%onnx::Conv_615)
  %onnx::Conv_627 = Identity(%onnx::Conv_615)
  %onnx::Conv_624 = Identity(%onnx::Conv_615)
  %onnx::Conv_621 = Identity(%onnx::Conv_618)
  %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_614, %onnx::Conv_615)
  %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0)
  %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_617, %onnx::Conv_618)
  %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0)
  %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_620, %onnx::Conv_621)
  %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0)
  %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_623, %onnx::Conv_624)
  %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0)
  %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_626, %onnx::Conv_627)
  %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0)
  %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.1/nl/Relu_output_0, %onnx::Conv_629, %onnx::Conv_630)
  %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0)
  %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_632, %onnx::Conv_633)
  %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_635, %onnx::Conv_636)
  %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0)
  %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_638, %onnx::Conv_639)
  %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0)
  %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_641, %onnx::Conv_642)
  %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0)
  %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_644, %onnx::Conv_645)
  %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0)
  %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 144, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_647, %onnx::Conv_648)
  %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0)
  %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_650, %onnx::Conv_651)
  %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0)
  %/cells.4/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_653, %onnx::Conv_654)
  %/cells.4/nl/Relu_output_0 = Relu(%/cells.4/conv1/Conv_output_0)
  %/cells.4/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.4/nl/Relu_output_0, %onnx::Conv_656, %onnx::Conv_657)
  %/cells.4/nl_1/Relu_output_0 = Relu(%/cells.4/conv2/Conv_output_0)
  %/cells.4/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.4/nl_1/Relu_output_0, %onnx::Conv_659, %onnx::Conv_660)
  %/cells.4/Add_output_0 = Add(%/cells.4/conv3/Conv_output_0, %/cells.3/Add_output_0)
  %/cells.5/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [2, 2]](%/cells.4/Add_output_0, %onnx::Conv_662, %onnx::Conv_663)
  %/cells.5/relu/Relu_output_0 = Relu(%/cells.5/conv/Conv_output_0)
  %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/relu/Relu_output_0, %onnx::Conv_665, %onnx::Conv_666)
  %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0)
  %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.6/nl/Relu_output_0, %onnx::Conv_668, %onnx::Conv_669)
  %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0)
  %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_671, %onnx::Conv_672)
  %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/relu/Relu_output_0)
  %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_674, %onnx::Conv_675)
  %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0)
  %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_677, %onnx::Conv_678)
  %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0)
  %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_680, %onnx::Conv_681)
  %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0)
  %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_683, %onnx::Conv_684)
  %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0)
  %/cells.8/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.8/shuffle/Reshape_output_0 = Reshape(%/cells.8/nl/Relu_output_0, %/cells.8/shuffle/Constant_output_0)
  %/cells.8/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.8/shuffle/Reshape_output_0)
  %/cells.8/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.8/shuffle/Reshape_1_output_0 = Reshape(%/cells.8/shuffle/Transpose_output_0, %/cells.8/shuffle/Constant_1_output_0)
  %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/shuffle/Reshape_1_output_0, %onnx::Conv_686, %onnx::Conv_687)
  %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0)
  %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_689, %onnx::Conv_690)
  %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0)
  %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_692, %onnx::Conv_693)
  %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0)
  %/cells.9/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.9/shuffle/Reshape_output_0 = Reshape(%/cells.9/nl/Relu_output_0, %/cells.9/shuffle/Constant_output_0)
  %/cells.9/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.9/shuffle/Reshape_output_0)
  %/cells.9/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.9/shuffle/Reshape_1_output_0 = Reshape(%/cells.9/shuffle/Transpose_output_0, %/cells.9/shuffle/Constant_1_output_0)
  %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.9/shuffle/Reshape_1_output_0, %onnx::Conv_695, %onnx::Conv_696)
  %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0)
  %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_698, %onnx::Conv_699)
  %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_701, %onnx::Conv_702)
  %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0)
  %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_704, %onnx::Conv_705)
  %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0)
  %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_707, %onnx::Conv_708)
  %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0)
  %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_710, %onnx::Conv_711)
  %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0)
  %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_713, %onnx::Conv_714)
  %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0)
  %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_716, %onnx::Conv_717)
  %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0)
  %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_719, %onnx::Conv_720)
  %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0)
  %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.13/nl/Relu_output_0, %onnx::Conv_722, %onnx::Conv_723)
  %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0)
  %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_725, %onnx::Conv_726)
  %/cells.14/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_728, %onnx::Conv_729)
  %/cells.14/nl/Relu_output_0 = Relu(%/cells.14/conv1/Conv_output_0)
  %/cells.14/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 336, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.14/nl/Relu_output_0, %onnx::Conv_731, %onnx::Conv_732)
  %/cells.14/nl_1/Relu_output_0 = Relu(%/cells.14/conv2/Conv_output_0)
  %/cells.14/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/nl_1/Relu_output_0, %onnx::Conv_734, %onnx::Conv_735)
  %/cells.14/Add_output_0 = Add(%/cells.14/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0)
  %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.14/Add_output_0, %onnx::Conv_737, %onnx::Conv_738)
  %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0)
  %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.15/nl/Relu_output_0, %onnx::Conv_740, %onnx::Conv_741)
  %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0)
  %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_743, %onnx::Conv_744)
  %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.14/Add_output_0)
  %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_746, %onnx::Conv_747)
  %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0)
  %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_749, %onnx::Conv_750)
  %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0)
  %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_752, %onnx::Conv_753)
  %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0)
  %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_755, %onnx::Conv_756)
  %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0)
  %/cells.17/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.17/shuffle/Reshape_output_0 = Reshape(%/cells.17/nl/Relu_output_0, %/cells.17/shuffle/Constant_output_0)
  %/cells.17/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.17/shuffle/Reshape_output_0)
  %/cells.17/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.17/shuffle/Reshape_1_output_0 = Reshape(%/cells.17/shuffle/Transpose_output_0, %/cells.17/shuffle/Constant_1_output_0)
  %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.17/shuffle/Reshape_1_output_0, %onnx::Conv_758, %onnx::Conv_759)
  %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0)
  %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_761, %onnx::Conv_762)
  %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_764, %onnx::Conv_765)
  %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0)
  %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.18/nl/Relu_output_0, %onnx::Conv_767, %onnx::Conv_768)
  %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0)
  %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_770, %onnx::Conv_771)
  %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0)
  %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_773, %onnx::Conv_774)
  %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0)
  %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_776, %onnx::Conv_777)
  %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0)
  %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_779, %onnx::Conv_780)
  %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0)
  %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_782, %onnx::Conv_783)
  %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0)
  %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_785, %onnx::Conv_786)
  %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0)
  %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_788, %onnx::Conv_789)
  %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0)
  %/cells.21/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_791, %onnx::Conv_792)
  %/cells.21/relu/Relu_output_0 = Relu(%/cells.21/conv/Conv_output_0)
  %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/relu/Relu_output_0, %onnx::Conv_794, %onnx::Conv_795)
  %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0)
  %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0)
  %/Constant_output_0 = Constant[value = <Tensor>]()
  %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0)
  %612 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %612
} | 
	val_accuracy | 0 | 89,349,760 | 2,305,964 | 
	{'zcp_synflow': 80.09361736096291, 'zcp_zen': 69.13285827636719, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.1393628865480423, 'zcp_flops': 89349760.0, 'zcp_grad_norm': 24.19607925415039, 'zcp_grasp': -0.6269760131835938, 'zcp_jacov': -16.05194956558284, 'zcp_l2_norm': 662.1394653320312, 'zcp_nwot': 214.88378987383192, 'zcp_params': 2305964.0, 'zcp_plain': -0.0013865637592971325, 'zcp_snip': 38.00193786621094, 'lat_1080ti_1': 0.5204719997787972, 'lat_1080ti_32': 0.5659851206828316, 'lat_1080ti_64': 0.5990878778939719, 'lat_2080ti_1': 0.5958451295592189, 'lat_2080ti_32': 0.5836745915726919, 'lat_2080ti_64': 0.5704755487446825, 'lat_essential_ph_1': 0.32075471698113206, 'lat_eyeriss': 0.6683384372765114, 'lat_fpga': 0.7503636489575396, 'lat_gold_6226': 0.5450132258464436, 'lat_gold_6240': 0.6889197876907966, 'lat_pixel2': 0.43478260869565216, 'lat_pixel3': 0.6975302617914462, 'lat_raspi4': 0.6969157412732605, 'lat_samsung_a50': 0.2736842105263158, 'lat_samsung_s7': 0.2440944881889764, 'lat_silver_4114': 0.6517922776309893, 'lat_silver_4210r': 0.6255324665522993, 'lat_titan_rtx_1': 0.5341944988561914, 'lat_titan_rtx_32': 0.5561598051969695, 'lat_titan_rtx_64': 0.5718109531650867, 'lat_titanx_1': 0.28387214790005866, 'lat_titanx_32': 0.5696258353219211, 'lat_titanx_64': 0.6652357835215776, 'lat_titanxp_1': 0.518992713940281, 'lat_titanxp_32': 0.5788742219975535, 'lat_titanxp_64': 0.5935235743727539} | |
| 
	FBNet_4771 | 
	FBNet | 
	4771 | 
	4771 | 
	graph main_graph (
  %input.1[FLOAT, 1x3x32x32]
  %fc.weight[FLOAT, 100x1504]
  %fc.bias[FLOAT, 100]
  %onnx::Conv_678[FLOAT, 16x3x3x3]
  %onnx::Conv_679[FLOAT, 16]
  %onnx::Conv_681[FLOAT, 96x16x1x1]
  %onnx::Conv_682[FLOAT, 96]
  %onnx::Conv_684[FLOAT, 96x1x5x5]
  %onnx::Conv_687[FLOAT, 16x96x1x1]
  %onnx::Conv_690[FLOAT, 16x8x1x1]
  %onnx::Conv_693[FLOAT, 16x1x3x3]
  %onnx::Conv_696[FLOAT, 24x8x1x1]
  %onnx::Conv_697[FLOAT, 24]
  %onnx::Conv_699[FLOAT, 72x24x1x1]
  %onnx::Conv_700[FLOAT, 72]
  %onnx::Conv_702[FLOAT, 72x1x5x5]
  %onnx::Conv_705[FLOAT, 24x72x1x1]
  %onnx::Conv_708[FLOAT, 24x24x1x1]
  %onnx::Conv_711[FLOAT, 24x1x3x3]
  %onnx::Conv_714[FLOAT, 24x24x1x1]
  %onnx::Conv_717[FLOAT, 24x24x1x1]
  %onnx::Conv_720[FLOAT, 24x1x3x3]
  %onnx::Conv_723[FLOAT, 32x24x1x1]
  %onnx::Conv_724[FLOAT, 32]
  %onnx::Conv_726[FLOAT, 32x16x1x1]
  %onnx::Conv_729[FLOAT, 32x1x5x5]
  %onnx::Conv_732[FLOAT, 32x16x1x1]
  %onnx::Conv_735[FLOAT, 96x32x1x1]
  %onnx::Conv_738[FLOAT, 96x1x5x5]
  %onnx::Conv_741[FLOAT, 32x96x1x1]
  %onnx::Conv_744[FLOAT, 192x32x1x1]
  %onnx::Conv_745[FLOAT, 192]
  %onnx::Conv_747[FLOAT, 192x1x5x5]
  %onnx::Conv_750[FLOAT, 32x192x1x1]
  %onnx::Conv_753[FLOAT, 32x32x1x1]
  %onnx::Conv_756[FLOAT, 32x1x5x5]
  %onnx::Conv_759[FLOAT, 64x32x1x1]
  %onnx::Conv_760[FLOAT, 64]
  %onnx::Conv_762[FLOAT, 64x64x1x1]
  %onnx::Conv_765[FLOAT, 64x1x3x3]
  %onnx::Conv_768[FLOAT, 64x64x1x1]
  %onnx::Conv_771[FLOAT, 384x64x1x1]
  %onnx::Conv_772[FLOAT, 384]
  %onnx::Conv_774[FLOAT, 384x1x3x3]
  %onnx::Conv_777[FLOAT, 64x384x1x1]
  %onnx::Conv_780[FLOAT, 64x32x1x1]
  %onnx::Conv_783[FLOAT, 64x1x3x3]
  %onnx::Conv_786[FLOAT, 64x32x1x1]
  %onnx::Conv_789[FLOAT, 64x32x1x1]
  %onnx::Conv_792[FLOAT, 64x1x5x5]
  %onnx::Conv_795[FLOAT, 112x32x1x1]
  %onnx::Conv_796[FLOAT, 112]
  %onnx::Conv_798[FLOAT, 112x56x1x1]
  %onnx::Conv_801[FLOAT, 112x1x3x3]
  %onnx::Conv_804[FLOAT, 112x56x1x1]
  %onnx::Conv_807[FLOAT, 672x112x1x1]
  %onnx::Conv_808[FLOAT, 672]
  %onnx::Conv_810[FLOAT, 672x1x3x3]
  %onnx::Conv_813[FLOAT, 112x672x1x1]
  %onnx::Conv_816[FLOAT, 672x112x1x1]
  %onnx::Conv_819[FLOAT, 672x1x5x5]
  %onnx::Conv_822[FLOAT, 184x672x1x1]
  %onnx::Conv_823[FLOAT, 184]
  %onnx::Conv_825[FLOAT, 184x92x1x1]
  %onnx::Conv_828[FLOAT, 184x1x5x5]
  %onnx::Conv_831[FLOAT, 184x92x1x1]
  %onnx::Conv_834[FLOAT, 1104x184x1x1]
  %onnx::Conv_835[FLOAT, 1104]
  %onnx::Conv_837[FLOAT, 1104x1x5x5]
  %onnx::Conv_840[FLOAT, 184x1104x1x1]
  %onnx::Conv_843[FLOAT, 184x184x1x1]
  %onnx::Conv_846[FLOAT, 184x1x3x3]
  %onnx::Conv_849[FLOAT, 184x184x1x1]
  %onnx::Conv_852[FLOAT, 184x184x1x1]
  %onnx::Conv_855[FLOAT, 184x1x3x3]
  %onnx::Conv_858[FLOAT, 352x184x1x1]
  %onnx::Conv_859[FLOAT, 352]
  %onnx::Conv_861[FLOAT, 1504x352x1x1]
  %onnx::Conv_862[FLOAT, 1504]
) {
  %onnx::Conv_856 = Identity(%onnx::Conv_823)
  %onnx::Conv_853 = Identity(%onnx::Conv_823)
  %onnx::Conv_850 = Identity(%onnx::Conv_823)
  %onnx::Conv_847 = Identity(%onnx::Conv_823)
  %onnx::Conv_844 = Identity(%onnx::Conv_823)
  %onnx::Conv_841 = Identity(%onnx::Conv_823)
  %onnx::Conv_838 = Identity(%onnx::Conv_835)
  %onnx::Conv_832 = Identity(%onnx::Conv_823)
  %onnx::Conv_829 = Identity(%onnx::Conv_823)
  %onnx::Conv_826 = Identity(%onnx::Conv_823)
  %onnx::Conv_820 = Identity(%onnx::Conv_808)
  %onnx::Conv_817 = Identity(%onnx::Conv_808)
  %onnx::Conv_814 = Identity(%onnx::Conv_796)
  %onnx::Conv_811 = Identity(%onnx::Conv_808)
  %onnx::Conv_805 = Identity(%onnx::Conv_796)
  %onnx::Conv_802 = Identity(%onnx::Conv_796)
  %onnx::Conv_799 = Identity(%onnx::Conv_796)
  %onnx::Conv_793 = Identity(%onnx::Conv_760)
  %onnx::Conv_790 = Identity(%onnx::Conv_760)
  %onnx::Conv_787 = Identity(%onnx::Conv_760)
  %onnx::Conv_784 = Identity(%onnx::Conv_760)
  %onnx::Conv_781 = Identity(%onnx::Conv_760)
  %onnx::Conv_778 = Identity(%onnx::Conv_760)
  %onnx::Conv_775 = Identity(%onnx::Conv_772)
  %onnx::Conv_769 = Identity(%onnx::Conv_760)
  %onnx::Conv_766 = Identity(%onnx::Conv_760)
  %onnx::Conv_763 = Identity(%onnx::Conv_760)
  %onnx::Conv_757 = Identity(%onnx::Conv_724)
  %onnx::Conv_754 = Identity(%onnx::Conv_724)
  %onnx::Conv_751 = Identity(%onnx::Conv_724)
  %onnx::Conv_748 = Identity(%onnx::Conv_745)
  %onnx::Conv_742 = Identity(%onnx::Conv_724)
  %onnx::Conv_739 = Identity(%onnx::Conv_682)
  %onnx::Conv_736 = Identity(%onnx::Conv_682)
  %onnx::Conv_733 = Identity(%onnx::Conv_724)
  %onnx::Conv_730 = Identity(%onnx::Conv_724)
  %onnx::Conv_727 = Identity(%onnx::Conv_724)
  %onnx::Conv_721 = Identity(%onnx::Conv_697)
  %onnx::Conv_718 = Identity(%onnx::Conv_697)
  %onnx::Conv_715 = Identity(%onnx::Conv_697)
  %onnx::Conv_712 = Identity(%onnx::Conv_697)
  %onnx::Conv_709 = Identity(%onnx::Conv_697)
  %onnx::Conv_706 = Identity(%onnx::Conv_697)
  %onnx::Conv_703 = Identity(%onnx::Conv_700)
  %onnx::Conv_694 = Identity(%onnx::Conv_679)
  %onnx::Conv_691 = Identity(%onnx::Conv_679)
  %onnx::Conv_688 = Identity(%onnx::Conv_679)
  %onnx::Conv_685 = Identity(%onnx::Conv_682)
  %/stem/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.1, %onnx::Conv_678, %onnx::Conv_679)
  %/stem/relu/Relu_output_0 = Relu(%/stem/conv/Conv_output_0)
  %/cells.0/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/stem/relu/Relu_output_0, %onnx::Conv_681, %onnx::Conv_682)
  %/cells.0/nl/Relu_output_0 = Relu(%/cells.0/conv1/Conv_output_0)
  %/cells.0/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.0/nl/Relu_output_0, %onnx::Conv_684, %onnx::Conv_685)
  %/cells.0/nl_1/Relu_output_0 = Relu(%/cells.0/conv2/Conv_output_0)
  %/cells.0/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/nl_1/Relu_output_0, %onnx::Conv_687, %onnx::Conv_688)
  %/cells.0/Add_output_0 = Add(%/cells.0/conv3/Conv_output_0, %/stem/relu/Relu_output_0)
  %/cells.1/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.0/Add_output_0, %onnx::Conv_690, %onnx::Conv_691)
  %/cells.1/nl/Relu_output_0 = Relu(%/cells.1/conv1/Conv_output_0)
  %/cells.1/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.1/shuffle/Reshape_output_0 = Reshape(%/cells.1/nl/Relu_output_0, %/cells.1/shuffle/Constant_output_0)
  %/cells.1/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.1/shuffle/Reshape_output_0)
  %/cells.1/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.1/shuffle/Reshape_1_output_0 = Reshape(%/cells.1/shuffle/Transpose_output_0, %/cells.1/shuffle/Constant_1_output_0)
  %/cells.1/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 16, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.1/shuffle/Reshape_1_output_0, %onnx::Conv_693, %onnx::Conv_694)
  %/cells.1/nl_1/Relu_output_0 = Relu(%/cells.1/conv2/Conv_output_0)
  %/cells.1/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/nl_1/Relu_output_0, %onnx::Conv_696, %onnx::Conv_697)
  %/cells.2/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.1/conv3/Conv_output_0, %onnx::Conv_699, %onnx::Conv_700)
  %/cells.2/nl/Relu_output_0 = Relu(%/cells.2/conv1/Conv_output_0)
  %/cells.2/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 72, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.2/nl/Relu_output_0, %onnx::Conv_702, %onnx::Conv_703)
  %/cells.2/nl_1/Relu_output_0 = Relu(%/cells.2/conv2/Conv_output_0)
  %/cells.2/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/nl_1/Relu_output_0, %onnx::Conv_705, %onnx::Conv_706)
  %/cells.2/Add_output_0 = Add(%/cells.2/conv3/Conv_output_0, %/cells.1/conv3/Conv_output_0)
  %/cells.3/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.2/Add_output_0, %onnx::Conv_708, %onnx::Conv_709)
  %/cells.3/nl/Relu_output_0 = Relu(%/cells.3/conv1/Conv_output_0)
  %/cells.3/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.3/nl/Relu_output_0, %onnx::Conv_711, %onnx::Conv_712)
  %/cells.3/nl_1/Relu_output_0 = Relu(%/cells.3/conv2/Conv_output_0)
  %/cells.3/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/nl_1/Relu_output_0, %onnx::Conv_714, %onnx::Conv_715)
  %/cells.3/Add_output_0 = Add(%/cells.3/conv3/Conv_output_0, %/cells.2/Add_output_0)
  %/cells.5/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.3/Add_output_0, %onnx::Conv_717, %onnx::Conv_718)
  %/cells.5/nl/Relu_output_0 = Relu(%/cells.5/conv1/Conv_output_0)
  %/cells.5/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 24, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [2, 2]](%/cells.5/nl/Relu_output_0, %onnx::Conv_720, %onnx::Conv_721)
  %/cells.5/nl_1/Relu_output_0 = Relu(%/cells.5/conv2/Conv_output_0)
  %/cells.5/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/nl_1/Relu_output_0, %onnx::Conv_723, %onnx::Conv_724)
  %/cells.6/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.5/conv3/Conv_output_0, %onnx::Conv_726, %onnx::Conv_727)
  %/cells.6/nl/Relu_output_0 = Relu(%/cells.6/conv1/Conv_output_0)
  %/cells.6/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.6/shuffle/Reshape_output_0 = Reshape(%/cells.6/nl/Relu_output_0, %/cells.6/shuffle/Constant_output_0)
  %/cells.6/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.6/shuffle/Reshape_output_0)
  %/cells.6/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.6/shuffle/Reshape_1_output_0 = Reshape(%/cells.6/shuffle/Transpose_output_0, %/cells.6/shuffle/Constant_1_output_0)
  %/cells.6/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.6/shuffle/Reshape_1_output_0, %onnx::Conv_729, %onnx::Conv_730)
  %/cells.6/nl_1/Relu_output_0 = Relu(%/cells.6/conv2/Conv_output_0)
  %/cells.6/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/nl_1/Relu_output_0, %onnx::Conv_732, %onnx::Conv_733)
  %/cells.6/Add_output_0 = Add(%/cells.6/conv3/Conv_output_0, %/cells.5/conv3/Conv_output_0)
  %/cells.7/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.6/Add_output_0, %onnx::Conv_735, %onnx::Conv_736)
  %/cells.7/nl/Relu_output_0 = Relu(%/cells.7/conv1/Conv_output_0)
  %/cells.7/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 96, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.7/nl/Relu_output_0, %onnx::Conv_738, %onnx::Conv_739)
  %/cells.7/nl_1/Relu_output_0 = Relu(%/cells.7/conv2/Conv_output_0)
  %/cells.7/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/nl_1/Relu_output_0, %onnx::Conv_741, %onnx::Conv_742)
  %/cells.7/Add_output_0 = Add(%/cells.7/conv3/Conv_output_0, %/cells.6/Add_output_0)
  %/cells.8/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.7/Add_output_0, %onnx::Conv_744, %onnx::Conv_745)
  %/cells.8/nl/Relu_output_0 = Relu(%/cells.8/conv1/Conv_output_0)
  %/cells.8/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 192, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.8/nl/Relu_output_0, %onnx::Conv_747, %onnx::Conv_748)
  %/cells.8/nl_1/Relu_output_0 = Relu(%/cells.8/conv2/Conv_output_0)
  %/cells.8/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/nl_1/Relu_output_0, %onnx::Conv_750, %onnx::Conv_751)
  %/cells.8/Add_output_0 = Add(%/cells.8/conv3/Conv_output_0, %/cells.7/Add_output_0)
  %/cells.9/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.8/Add_output_0, %onnx::Conv_753, %onnx::Conv_754)
  %/cells.9/nl/Relu_output_0 = Relu(%/cells.9/conv1/Conv_output_0)
  %/cells.9/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 32, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.9/nl/Relu_output_0, %onnx::Conv_756, %onnx::Conv_757)
  %/cells.9/nl_1/Relu_output_0 = Relu(%/cells.9/conv2/Conv_output_0)
  %/cells.9/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/nl_1/Relu_output_0, %onnx::Conv_759, %onnx::Conv_760)
  %/cells.10/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.9/conv3/Conv_output_0, %onnx::Conv_762, %onnx::Conv_763)
  %/cells.10/nl/Relu_output_0 = Relu(%/cells.10/conv1/Conv_output_0)
  %/cells.10/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.10/nl/Relu_output_0, %onnx::Conv_765, %onnx::Conv_766)
  %/cells.10/nl_1/Relu_output_0 = Relu(%/cells.10/conv2/Conv_output_0)
  %/cells.10/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/nl_1/Relu_output_0, %onnx::Conv_768, %onnx::Conv_769)
  %/cells.10/Add_output_0 = Add(%/cells.10/conv3/Conv_output_0, %/cells.9/conv3/Conv_output_0)
  %/cells.11/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.10/Add_output_0, %onnx::Conv_771, %onnx::Conv_772)
  %/cells.11/nl/Relu_output_0 = Relu(%/cells.11/conv1/Conv_output_0)
  %/cells.11/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 384, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.11/nl/Relu_output_0, %onnx::Conv_774, %onnx::Conv_775)
  %/cells.11/nl_1/Relu_output_0 = Relu(%/cells.11/conv2/Conv_output_0)
  %/cells.11/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/nl_1/Relu_output_0, %onnx::Conv_777, %onnx::Conv_778)
  %/cells.11/Add_output_0 = Add(%/cells.11/conv3/Conv_output_0, %/cells.10/Add_output_0)
  %/cells.12/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.11/Add_output_0, %onnx::Conv_780, %onnx::Conv_781)
  %/cells.12/nl/Relu_output_0 = Relu(%/cells.12/conv1/Conv_output_0)
  %/cells.12/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.12/shuffle/Reshape_output_0 = Reshape(%/cells.12/nl/Relu_output_0, %/cells.12/shuffle/Constant_output_0)
  %/cells.12/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.12/shuffle/Reshape_output_0)
  %/cells.12/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.12/shuffle/Reshape_1_output_0 = Reshape(%/cells.12/shuffle/Transpose_output_0, %/cells.12/shuffle/Constant_1_output_0)
  %/cells.12/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.12/shuffle/Reshape_1_output_0, %onnx::Conv_783, %onnx::Conv_784)
  %/cells.12/nl_1/Relu_output_0 = Relu(%/cells.12/conv2/Conv_output_0)
  %/cells.12/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/nl_1/Relu_output_0, %onnx::Conv_786, %onnx::Conv_787)
  %/cells.12/Add_output_0 = Add(%/cells.12/conv3/Conv_output_0, %/cells.11/Add_output_0)
  %/cells.13/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.12/Add_output_0, %onnx::Conv_789, %onnx::Conv_790)
  %/cells.13/nl/Relu_output_0 = Relu(%/cells.13/conv1/Conv_output_0)
  %/cells.13/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.13/shuffle/Reshape_output_0 = Reshape(%/cells.13/nl/Relu_output_0, %/cells.13/shuffle/Constant_output_0)
  %/cells.13/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.13/shuffle/Reshape_output_0)
  %/cells.13/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.13/shuffle/Reshape_1_output_0 = Reshape(%/cells.13/shuffle/Transpose_output_0, %/cells.13/shuffle/Constant_1_output_0)
  %/cells.13/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 64, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.13/shuffle/Reshape_1_output_0, %onnx::Conv_792, %onnx::Conv_793)
  %/cells.13/nl_1/Relu_output_0 = Relu(%/cells.13/conv2/Conv_output_0)
  %/cells.13/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/nl_1/Relu_output_0, %onnx::Conv_795, %onnx::Conv_796)
  %/cells.15/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.13/conv3/Conv_output_0, %onnx::Conv_798, %onnx::Conv_799)
  %/cells.15/nl/Relu_output_0 = Relu(%/cells.15/conv1/Conv_output_0)
  %/cells.15/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.15/shuffle/Reshape_output_0 = Reshape(%/cells.15/nl/Relu_output_0, %/cells.15/shuffle/Constant_output_0)
  %/cells.15/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.15/shuffle/Reshape_output_0)
  %/cells.15/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.15/shuffle/Reshape_1_output_0 = Reshape(%/cells.15/shuffle/Transpose_output_0, %/cells.15/shuffle/Constant_1_output_0)
  %/cells.15/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 112, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.15/shuffle/Reshape_1_output_0, %onnx::Conv_801, %onnx::Conv_802)
  %/cells.15/nl_1/Relu_output_0 = Relu(%/cells.15/conv2/Conv_output_0)
  %/cells.15/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/nl_1/Relu_output_0, %onnx::Conv_804, %onnx::Conv_805)
  %/cells.15/Add_output_0 = Add(%/cells.15/conv3/Conv_output_0, %/cells.13/conv3/Conv_output_0)
  %/cells.16/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.15/Add_output_0, %onnx::Conv_807, %onnx::Conv_808)
  %/cells.16/nl/Relu_output_0 = Relu(%/cells.16/conv1/Conv_output_0)
  %/cells.16/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.16/nl/Relu_output_0, %onnx::Conv_810, %onnx::Conv_811)
  %/cells.16/nl_1/Relu_output_0 = Relu(%/cells.16/conv2/Conv_output_0)
  %/cells.16/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/nl_1/Relu_output_0, %onnx::Conv_813, %onnx::Conv_814)
  %/cells.16/Add_output_0 = Add(%/cells.16/conv3/Conv_output_0, %/cells.15/Add_output_0)
  %/cells.17/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.16/Add_output_0, %onnx::Conv_816, %onnx::Conv_817)
  %/cells.17/nl/Relu_output_0 = Relu(%/cells.17/conv1/Conv_output_0)
  %/cells.17/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 672, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [2, 2]](%/cells.17/nl/Relu_output_0, %onnx::Conv_819, %onnx::Conv_820)
  %/cells.17/nl_1/Relu_output_0 = Relu(%/cells.17/conv2/Conv_output_0)
  %/cells.17/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/nl_1/Relu_output_0, %onnx::Conv_822, %onnx::Conv_823)
  %/cells.18/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.17/conv3/Conv_output_0, %onnx::Conv_825, %onnx::Conv_826)
  %/cells.18/nl/Relu_output_0 = Relu(%/cells.18/conv1/Conv_output_0)
  %/cells.18/shuffle/Constant_output_0 = Constant[value = <Tensor>]()
  %/cells.18/shuffle/Reshape_output_0 = Reshape(%/cells.18/nl/Relu_output_0, %/cells.18/shuffle/Constant_output_0)
  %/cells.18/shuffle/Transpose_output_0 = Transpose[perm = [0, 2, 1, 3, 4]](%/cells.18/shuffle/Reshape_output_0)
  %/cells.18/shuffle/Constant_1_output_0 = Constant[value = <Tensor>]()
  %/cells.18/shuffle/Reshape_1_output_0 = Reshape(%/cells.18/shuffle/Transpose_output_0, %/cells.18/shuffle/Constant_1_output_0)
  %/cells.18/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.18/shuffle/Reshape_1_output_0, %onnx::Conv_828, %onnx::Conv_829)
  %/cells.18/nl_1/Relu_output_0 = Relu(%/cells.18/conv2/Conv_output_0)
  %/cells.18/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 2, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/nl_1/Relu_output_0, %onnx::Conv_831, %onnx::Conv_832)
  %/cells.18/Add_output_0 = Add(%/cells.18/conv3/Conv_output_0, %/cells.17/conv3/Conv_output_0)
  %/cells.19/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.18/Add_output_0, %onnx::Conv_834, %onnx::Conv_835)
  %/cells.19/nl/Relu_output_0 = Relu(%/cells.19/conv1/Conv_output_0)
  %/cells.19/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 1104, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%/cells.19/nl/Relu_output_0, %onnx::Conv_837, %onnx::Conv_838)
  %/cells.19/nl_1/Relu_output_0 = Relu(%/cells.19/conv2/Conv_output_0)
  %/cells.19/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/nl_1/Relu_output_0, %onnx::Conv_840, %onnx::Conv_841)
  %/cells.19/Add_output_0 = Add(%/cells.19/conv3/Conv_output_0, %/cells.18/Add_output_0)
  %/cells.20/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.19/Add_output_0, %onnx::Conv_843, %onnx::Conv_844)
  %/cells.20/nl/Relu_output_0 = Relu(%/cells.20/conv1/Conv_output_0)
  %/cells.20/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.20/nl/Relu_output_0, %onnx::Conv_846, %onnx::Conv_847)
  %/cells.20/nl_1/Relu_output_0 = Relu(%/cells.20/conv2/Conv_output_0)
  %/cells.20/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/nl_1/Relu_output_0, %onnx::Conv_849, %onnx::Conv_850)
  %/cells.20/Add_output_0 = Add(%/cells.20/conv3/Conv_output_0, %/cells.19/Add_output_0)
  %/cells.21/conv1/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.20/Add_output_0, %onnx::Conv_852, %onnx::Conv_853)
  %/cells.21/nl/Relu_output_0 = Relu(%/cells.21/conv1/Conv_output_0)
  %/cells.21/conv2/Conv_output_0 = Conv[dilations = [1, 1], group = 184, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%/cells.21/nl/Relu_output_0, %onnx::Conv_855, %onnx::Conv_856)
  %/cells.21/nl_1/Relu_output_0 = Relu(%/cells.21/conv2/Conv_output_0)
  %/cells.21/conv3/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/nl_1/Relu_output_0, %onnx::Conv_858, %onnx::Conv_859)
  %/header/conv/Conv_output_0 = Conv[dilations = [1, 1], group = 1, kernel_shape = [1, 1], pads = [0, 0, 0, 0], strides = [1, 1]](%/cells.21/conv3/Conv_output_0, %onnx::Conv_861, %onnx::Conv_862)
  %/header/relu/Relu_output_0 = Relu(%/header/conv/Conv_output_0)
  %/avgpool/GlobalAveragePool_output_0 = GlobalAveragePool(%/header/relu/Relu_output_0)
  %/Constant_output_0 = Constant[value = <Tensor>]()
  %/Reshape_output_0 = Reshape(%/avgpool/GlobalAveragePool_output_0, %/Constant_output_0)
  %676 = Gemm[alpha = 1, beta = 1, transB = 1](%/Reshape_output_0, %fc.weight, %fc.bias)
  return %676
} | 
	val_accuracy | 0 | 65,905,792 | 1,850,804 | 
	{'zcp_synflow': 74.45914513395928, 'zcp_zen': 65.81018829345703, 'zcp_epe_nas': 0.00015999920000638146, 'zcp_fisher': 0.1806827336549759, 'zcp_flops': 65905792.0, 'zcp_grad_norm': 26.138343811035156, 'zcp_grasp': -0.3742866516113281, 'zcp_jacov': -16.069036510659764, 'zcp_l2_norm': 595.3342895507812, 'zcp_nwot': 210.59283885337132, 'zcp_params': 1850804.0, 'zcp_plain': -0.005425572860985994, 'zcp_snip': 44.5767936706543, 'lat_1080ti_1': 0.6014201526658447, 'lat_1080ti_32': 0.5453269999146533, 'lat_1080ti_64': 0.4547705564046725, 'lat_2080ti_1': 0.6513435290634121, 'lat_2080ti_32': 0.5805432788169245, 'lat_2080ti_64': 0.4534496435581907, 'lat_essential_ph_1': 0.3018867924528302, 'lat_eyeriss': 0.4329305191352025, 'lat_fpga': 0.404466697671657, 'lat_gold_6226': 0.3340004640499575, 'lat_gold_6240': 0.4948968582963916, 'lat_pixel2': 0.43478260869565216, 'lat_pixel3': 0.4352346146182577, 'lat_raspi4': 0.43137202568855676, 'lat_samsung_a50': 0.17894736842105263, 'lat_samsung_s7': 0.3228346456692913, 'lat_silver_4114': 0.49559436419752245, 'lat_silver_4210r': 0.5396103748660447, 'lat_titan_rtx_1': 0.6148024991938857, 'lat_titan_rtx_32': 0.5775268822041426, 'lat_titan_rtx_64': 0.4913464369880751, 'lat_titanx_1': 0.3377277900145658, 'lat_titanx_32': 0.5138761004809946, 'lat_titanx_64': 0.4112458308271014, 'lat_titanxp_1': 0.5897930729637024, 'lat_titanxp_32': 0.5437168642685023, 'lat_titanxp_64': 0.45080964110827554} | |
| 
	FBNet_2978 | 
	FBNet | 
	2978 | 
	2978 | "graph main_graph (\n  %input.1[FLOAT, 1x3x32x32]\n  %fc.weight[FLOAT, 100x1504]\n  %fc.bias[FLOAT, (...TRUNCATED) | 
	val_accuracy | 0 | 47,598,976 | 1,381,932 | "{'zcp_synflow': 73.81326985261533, 'zcp_zen': 64.21788024902344, 'zcp_epe_nas': 18.820997031323483,(...TRUNCATED) | |
| 
	FBNet_2426 | 
	FBNet | 
	2426 | 
	2426 | "graph main_graph (\n  %input.1[FLOAT, 1x3x32x32]\n  %fc.weight[FLOAT, 100x1504]\n  %fc.bias[FLOAT, (...TRUNCATED) | 
	val_accuracy | 0 | 74,623,104 | 1,715,716 | "{'zcp_synflow': 68.94106884809352, 'zcp_zen': 61.849754333496094, 'zcp_epe_nas': 7.152478175373565,(...TRUNCATED) | |
| 
	FBNet_873 | 
	FBNet | 
	873 | 
	873 | "graph main_graph (\n  %input.1[FLOAT, 1x3x32x32]\n  %fc.weight[FLOAT, 100x1504]\n  %fc.bias[FLOAT, (...TRUNCATED) | 
	val_accuracy | 0 | 77,806,720 | 2,044,812 | "{'zcp_synflow': 81.12326995173713, 'zcp_zen': 71.46871185302734, 'zcp_epe_nas': 8.297040847397502, (...TRUNCATED) | 
GraphArch-Regression
A unified regression dataset collated from multiple graph/architecture search sources (FBNet, Hiaml, Inception, NB101, NB201, NDS, OfaMB, OfaPN, OfaRN, SNAS, Twopath) for training and evaluating models that map ONNX-readable graph strings to a target metric.
Schema
- identifier (string): Source key for the example, e.g. FBNet_0,SNAS_42.
- space (string): Logical dataset source (FBNet,Hiaml,Inception,NB101,NB201,NDS,OfaMB,OfaPN,OfaRN,SNAS,Twopath).
- uid (string): Original UID, if provided by the source.
- arch_str (string): Architecture identity; first non-empty among arch_str,hash,uid.
- input (string): ONNX-readable graph string (onnx_readable).
- target_metric (string): Always val_accuracy.
- val_accuracy (number | null): Primary regression target (Accuracy)
- flops (number | null): FLOPs for the architecture (if available).
- params (number | null): Parameter count (if available).
- metadata (string): Python-dict-like string including only keys that start with zcp_orlat_(e.g., zero-cost proxies and latency measurements). Not populated forSNAS. These can be used for multi-objective regression.
- metainformation (string): Only for SNAS; Python-dict-like string of selected fields{arch_str, macro, train_time_sec, steps_ran, precision, batch_size}.
Dataset Size
With this dataset, we provide ONNX text for universal-NAS regression training over 611931 architectures:
- Amoeba: 4983
- DARTS: 5000
- DARTS_fix-w-d: 5000
- DARTS_lr-wd: 5000
- ENAS: 4999
- ENAS_fix-w-d: 5000
- FBNet: 5000
- Hiaml: 4629
- Inception: 580
- NASBench101 (NB101): 423624
- NASBench201 (NB201): 15625
- NASNet: 4846
- OfaMB: 7491
- OfaPN: 8206
- OfaRN: 10000
- PNAS: 4999
- PNAS_fix-w-d: 4559
- SNAS: 85500
- TwoPath: 6890
Tip: turn
metadataormetainformationback into a dict with:from ast import literal_eval meta = literal_eval(row["metadata"])
How to load with 🤗 Datasets
from datasets import load_dataset
ds = load_dataset("akhauriyash/GraphArch-Regression")
Testing Graph Architecture Regression with a basic Gemma RLM model
Use the code below as reference for evaluating a basic RegressLM model ( better, more models to come! :) )
Note that the best practice is to fine-tune this base model on more NAS ONNX graph data, and few-shot transfer to the target search space (Say NASNet, etc.). If we want to finetune on 16 examples from say, ENAS, the optimal strategy we found was to construct a small NAS dataset of e.g., DARTS, NASNet, Amoeba, ENAS and use ~(1024, 1024, 1024, 16) samples from each, and up-sample (repeat) the 16 ENAS samples 8 times. Random-shuffle the dataset and fine-tune the RLM with 1e-4 LR (cosine decay) to avoid catastrophic forgetting. The code below is just illustrative to demonstrate non-trivial NAS performance. The model training corpus was only 1% NAS data, the rest was code.
import torch
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from scipy.stats import spearmanr
from tqdm import tqdm
REPO_ID = "akhauriyash/RLM-GemmaS-Code-v0"
DATASET = "akhauriyash/GraphArch-Regression"
dataset = load_dataset(DATASET, split="train")
tok = AutoTokenizer.from_pretrained(REPO_ID, trust_remote_code=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForSeq2SeqLM.from_pretrained(REPO_ID, trust_remote_code=True).to(device).eval()
MAX_ITEMS, BATCH_SIZE, spaces, results = 512, 4, ["NASBench101", "ENAS", "NASNet"], {}
n_out_tokens = getattr(model.config, "num_tokens_per_obj", 8) * getattr(model.config, "max_num_objs", 1)
n_out_tokens = model.config.num_tokens_per_obj * model.config.max_num_objs
for SPACE in spaces:
    inputs, targets = [], []
    for row in tqdm(dataset, desc=f"Processing {SPACE} till {MAX_ITEMS} items"):
        if row.get("space") == SPACE and "input" in row and "val_accuracy" in row:
            try:
                targets.append(float(row["val_accuracy"]))
                inputs.append(f"{SPACE}\n\n{row['input']}")
            except: continue
            if len(inputs) >= MAX_ITEMS: break
    preds = []
    for i in tqdm(range(0, len(inputs), BATCH_SIZE)):
        enc = tok(inputs[i:i+BATCH_SIZE], return_tensors="pt", truncation=True, padding=True, max_length=4096).to(device)
        batch_preds = []
        for _ in range(8):
            out = model.generate(**enc, max_new_tokens=n_out_tokens, min_new_tokens=n_out_tokens, do_sample=True, top_p=0.95, temperature=1.0)
            decoded = [tok.token_ids_to_floats(seq.tolist()) for seq in out]
            decoded = [d[0] if isinstance(d, list) and d else float("nan") for d in decoded]
            batch_preds.append(decoded)
        preds.extend(torch.tensor(batch_preds).median(dim=0).values.tolist())
    spear, _ = spearmanr(np.array(targets), np.array(preds))
    results[SPACE] = spear; print(f"Spearman ρ for {SPACE}: {spear:.3f}")
print("Spearman ρ | NASBench101 | ENAS | NASNet")
print(f"{REPO_ID} | " + " | ".join(f"{results[s]:.3f}" for s in spaces))
We got the following results when testing on a random subset of the GraphArch-Regression dataset.
Model ID                                 | NASBench101  | ENAS  | NASNet
akhauriyash/RegressLM-gemma-s-RLM-table3 | 0.384        | 0.211 | 0.209 
Credits
This dataset was collated from several graph/NAS sources, along with our own profiling where applicable. We export and generate the ONNX descriptions of all architectures in our dataset. Please credit and cite the original datasets accordingly.
Inception, Hiaml, Ofa-MB/PN/RN, Twopath:  Mills, K. G., Han, F. X., Zhang, J., Chudak, F., Mamaghani, A. S., Salameh, M., Lu, W., Jui, S., & Niu, D. (2023). Gennape: Towards generalized neural architecture performance estimators. Proceedings of the AAAI Conference on Artificial Intelligence, 37(8), 9190–9199.
NDS: Radosavovic, Ilija, et al. "On network design spaces for visual recognition." Proceedings of the IEEE/CVF international conference on computer vision. 2019.
NB101: Ying, Chris, et al. "Nas-bench-101: Towards reproducible neural architecture search." International conference on machine learning. PMLR, 2019.
NB201: Dong, Xuanyi, and Yi Yang. "Nas-bench-201: Extending the scope of reproducible neural architecture search."
FBNet: Wu, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
Further, multi-objective latency and zero cost proxies were sourced from
Krishnakumar, Arjun, et al. "Nas-bench-suite-zero: Accelerating research on zero cost proxies." Advances in Neural Information Processing Systems 35 (2022): 28037-28051.
Akhauri, Yash, and Mohamed S. Abdelfattah. "Encodings for prediction-based neural architecture search." arXiv preprint arXiv:2403.02484 (2024).
Akhauri, Yash, and Mohamed Abdelfattah. "On latency predictors for neural architecture search." Proceedings of Machine Learning and Systems 6 (2024): 512-523.
Lee, Hayeon, et al. "Help: Hardware-adaptive efficient latency prediction for nas via meta-learning.".
Citations
If you found this dataset useful for your research, please cite the original sources above as well as:
@article{akhauri2025regressionlanguagemodelscode,
      title={Regression Language Models for Code}, 
      author={Yash Akhauri and Xingyou Song and Arissa Wongpanich and Bryan Lewandowski and Mohamed S. Abdelfattah},
      journal={arXiv preprint arXiv:2509.26476},
      year={2025}
}
@article{akhauri2025performance,
  title={Performance Prediction for Large Systems via Text-to-Text Regression},
  author={Akhauri, Yash and Lewandowski, Bryan and Lin, Cheng-Hsi and Reyes, Adrian N and Forbes, Grant C and Wongpanich, Arissa and Yang, Bangding and Abdelfattah, Mohamed S and Perel, Sagi and Song, Xingyou},
  journal={arXiv preprint arXiv:2506.21718},
  year={2025}
}
- Downloads last month
- 78