The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 6 new columns ({'label', 'i', 'u', 'Unnamed: 0', 'idx', 'ts'}) and 5 missing columns ({'timestamp', 'w', 'destination', 'state_label', 'source'}).
This happened while the csv dataset builder was generating data using
hf://datasets/WeiChow/DyGraphs_raw/CanParl/ml_CanParl.csv (at revision 961fa4edc995601219c1e5c6cb313691bcf37315)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              u: int64
              i: int64
              ts: double
              label: double
              idx: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 897
              to
              {'source': Value(dtype='int64', id=None), 'destination': Value(dtype='int64', id=None), 'timestamp': Value(dtype='float64', id=None), 'state_label': Value(dtype='int64', id=None), 'w': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 6 new columns ({'label', 'i', 'u', 'Unnamed: 0', 'idx', 'ts'}) and 5 missing columns ({'timestamp', 'w', 'destination', 'state_label', 'source'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/WeiChow/DyGraphs_raw/CanParl/ml_CanParl.csv (at revision 961fa4edc995601219c1e5c6cb313691bcf37315)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
source
				 
			int64  | destination
				 
			int64  | timestamp
				 
			float64  | state_label
				 
			int64  | w
				 
			int64  | 
|---|---|---|---|---|
383 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
410 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
675 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
466 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
119 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
148 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
203 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
52 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
341 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
79 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
522 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
411 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
157 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
535 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
710 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
711 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
5 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
80 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
456 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
718 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
380 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
504 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
355 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
217 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
642 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
216 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
609 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
704 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
409 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
57 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
565 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
707 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
102 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
455 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
230 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
467 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
281 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
733 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
526 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
362 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
602 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
173 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
468 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
691 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
365 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
400 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
661 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
538 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
517 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
14 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
649 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
681 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
138 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
591 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
182 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
342 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
65 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
135 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
379 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
166 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
194 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
596 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
391 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
397 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
427 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
450 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
110 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
629 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
113 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
241 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
344 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
412 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
401 
							 | 352 
							 | 0 
							 | 0 
							 | 2 
							 | 
					
592 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
512 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
496 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
701 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
7 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
671 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
197 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
333 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
662 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
562 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
600 
							 | 352 
							 | 0 
							 | 0 
							 | 6 
							 | 
					
253 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
713 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
595 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
343 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
571 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
674 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
111 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
142 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
184 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
360 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
64 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
572 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
331 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
196 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
325 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
31 
							 | 352 
							 | 0 
							 | 0 
							 | 9 
							 | 
					
license: apache-2.0 tags: - text - graph task_categories: - graph-ml language: - en datasets: format: csv
The dataset is dynamic graphs for paper CrossLink. The usage of this dataset can be seen in Github
π Introduction
CrossLink learns the evolution pattern of a specific downstream graph and subsequently makes pattern-specific link predictions. It employs a technique called conditioned link generation, which integrates both evolution and structure modeling to perform evolution-specific link prediction. This conditioned link generation is carried out by a transformer-decoder architecture, enabling efficient parallel training and inference. CrossLink is trained on extensive dynamic graphs across diverse domains, encompassing 6 million dynamic edges. Extensive experiments on eight untrained graphs demonstrate that CrossLink achieves state-of-the-art performance in cross-domain link prediction. Compared to advanced baselines under the same settings, CrossLink shows an average improvement of 11.40% in Average Precision across eight graphs. Impressively, it surpasses the fully supervised performance of 8 advanced baselines on 6 untrained graphs.
Format
Please keep the dataset in the fellow format:
| Unnamed: 0 | u | i | ts | label | idx | 
|---|---|---|---|---|---|
idx-1 | 
source node | 
target node | 
interaction time | 
defalut: 0 | 
from 1 to the #edges | 
You can prepare those data by the code in preprocess_data folder
You can also use our processed data in huggingface
π Citation
If you find this work helpful, please consider citing:
@misc{huang2024graphmodelcrossdomaindynamic,
  title={One Graph Model for Cross-domain Dynamic Link Prediction}, 
  author={Xuanwen Huang and Wei Chow and Yang Wang and Ziwei Chai and Chunping Wang and Lei Chen and Yang Yang},
  year={2024},
  eprint={2402.02168},
  archivePrefix={arXiv},
  primaryClass={cs.LG},
  url={https://arxiv.org/abs/2402.02168}, 
}
- Downloads last month
 - 700
 
