SafeLIBERO / main_demo.py
THURCSCT's picture
Add files using upload-large-folder tool
14707ce verified
import collections
import dataclasses
import logging
import pathlib
import imageio
from libero.libero import benchmark
from libero.libero import get_libero_path
from libero.libero.envs import OffScreenRenderEnv
import numpy as np
import tqdm
import tyro
from typing import List
LIBERO_DUMMY_ACTION = [0.0] * 6 + [-1.0]
LIBERO_ENV_RESOLUTION = 256 # resolution used to render training data
@dataclasses.dataclass
class Args:
#################################################################################################################
# LIBERO environment-specific parameters
#################################################################################################################
task_suite_name: str = (
"safelibero_goal" # Task suite. Options: safelibero_spatial, safelibero_object, safelibero_goal, safelibero_long
)
safety_level: str = "I" # Task level. Options: I, II
# task_index: int = 0 # Task_id. Options: 0, 1, 2, 3
task_index: List[int] = dataclasses.field(default_factory=lambda: [0]) # Options: [0, 1, 2, 3]
# episode_index: int = 0 # Episode_id. Options: 0~49
episode_index: List[int] = dataclasses.field(default_factory=lambda: [0]) # Options: [0, 1, 2, 3, 4, ..., 49]
num_steps_wait: int = 10 # Number of steps to wait for objects to stabilize i n sim
num_trials_per_task: int = 50 # Number of rollouts per task
#################################################################################################################
# Utils
#################################################################################################################
video_out_path: str = "data/libero/videos" # Path to save videos
seed: int = 7 # Random Seed (for reproducibility)
def eval_libero(args: Args) -> None:
# Set random seed
np.random.seed(args.seed)
safety_level = args.safety_level
task_index = args.task_index
episode_index = args.episode_index
# Initialize LIBERO task suite
benchmark_dict = benchmark.get_benchmark_dict()
task_suite = benchmark_dict[args.task_suite_name](safety_level=safety_level)
num_tasks_in_suite = task_suite.n_tasks
logging.info(f"Task suite: {args.task_suite_name}, safety level: {safety_level}")
pathlib.Path(args.video_out_path).mkdir(parents=True, exist_ok=True)
# Set to 10 for a quick view
if args.task_suite_name == "safelibero_spatial":
max_steps = 10
elif args.task_suite_name == "safelibero_object":
max_steps = 10
elif args.task_suite_name == "safelibero_goal":
max_steps = 10
elif args.task_suite_name == "safelibero_long":
max_steps = 10
else:
raise ValueError(f"Unknown task suite: {args.task_suite_name}")
# Start evaluation
total_episodes, total_successes = 0, 0
# only run for the firsrst task
for task_id in tqdm.tqdm(task_index): # All tasks: range(num_tasks_in_suite)
# Get task
task = task_suite.get_task(task_id)
# Get default LIBERO initial states
initial_states = task_suite.get_task_init_states(task_id)
# Initialize LIBERO environment and task description
env, task_description = _get_libero_env(task, safety_level, LIBERO_ENV_RESOLUTION, args.seed)
# Start episodes
task_episodes, task_successes = 0, 0
#Only run for the first episode
for episode_idx in tqdm.tqdm(episode_index): # All episodes: range(args.num_trials_per_task)
logging.info(f"\nTask: {task_description}")
# Reset environment
env.reset()
# Set initial states
obs = env.set_init_state(initial_states[episode_idx])
# Setup
t = 0
replay_images = []
logging.info(f"Starting episode {task_episodes+1}...")
while t < max_steps + args.num_steps_wait:
try:
# IMPORTANT: Do nothing for the first few timesteps because the simulator drops objects
# and we need to wait for them to fall
if t < args.num_steps_wait:
obs, reward, done, info = env.step(LIBERO_DUMMY_ACTION)
t += 1
continue
# Get preprocessed image
# IMPORTANT: rotate 180 degrees to match train preprocessing
img = np.ascontiguousarray(obs["agentview_image"][::-1, ::-1])
# Save preprocessed image for replay video
replay_images.append(img)
action = LIBERO_DUMMY_ACTION
# Execute action in environment
obs, reward, done, info = env.step(action)
if done:
task_successes += 1
total_successes += 1
break
t += 1
except Exception as e:
logging.error(f"Caught exception: {e}")
break
task_episodes += 1
total_episodes += 1
# Save a replay video of the episode
suffix = "success" if done else "failure"
task_segment = task_description.replace(" ", "_")
imageio.mimwrite(
pathlib.Path(args.video_out_path) / f"rollout_{task_segment}_{safety_level}_{episode_idx}_{suffix}.mp4",
[np.asarray(x) for x in replay_images],
fps=10,
)
logging.info(f"Saved replay video to {pathlib.Path(args.video_out_path) / f'rollout_{task_segment}_{safety_level}_{episode_idx}_{suffix}.mp4'}")
# Log current results
logging.info(f"Success: {done}")
logging.info(f"# episodes completed so far: {total_episodes}")
logging.info(f"# successes: {total_successes} ({total_successes / total_episodes * 100:.1f}%)")
# Log final results
logging.info(f"Current task success rate: {float(task_successes) / float(task_episodes)}")
logging.info(f"Current total success rate: {float(total_successes) / float(total_episodes)}")
logging.info(f"Total success rate: {float(total_successes) / float(total_episodes)}")
logging.info(f"Total episodes: {total_episodes}")
def _get_libero_env(task, level, resolution, seed):
"""Initializes and returns the LIBERO environment, along with the task description."""
task_description = task.language
task_bddl_file = pathlib.Path(get_libero_path("bddl_files")) / task.problem_folder / task.bddl_file
env_args = {"bddl_file_name": task_bddl_file, "camera_heights": resolution, "camera_widths": resolution}
env = OffScreenRenderEnv(**env_args)
env.seed(seed) # IMPORTANT: seed seems to affect object positions even when using fixed initial state
return env, task_description
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
args = tyro.cli(Args)
eval_libero(args)