|
|
import collections
|
|
|
import dataclasses
|
|
|
import logging
|
|
|
import pathlib
|
|
|
|
|
|
import imageio
|
|
|
from libero.libero import benchmark
|
|
|
from libero.libero import get_libero_path
|
|
|
from libero.libero.envs import OffScreenRenderEnv
|
|
|
import numpy as np
|
|
|
import tqdm
|
|
|
import tyro
|
|
|
from typing import List
|
|
|
|
|
|
LIBERO_DUMMY_ACTION = [0.0] * 6 + [-1.0]
|
|
|
LIBERO_ENV_RESOLUTION = 256
|
|
|
|
|
|
|
|
|
@dataclasses.dataclass
|
|
|
class Args:
|
|
|
|
|
|
|
|
|
|
|
|
task_suite_name: str = (
|
|
|
"safelibero_goal"
|
|
|
)
|
|
|
safety_level: str = "I"
|
|
|
|
|
|
task_index: List[int] = dataclasses.field(default_factory=lambda: [0])
|
|
|
|
|
|
episode_index: List[int] = dataclasses.field(default_factory=lambda: [0])
|
|
|
num_steps_wait: int = 10
|
|
|
num_trials_per_task: int = 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
video_out_path: str = "data/libero/videos"
|
|
|
|
|
|
seed: int = 7
|
|
|
|
|
|
|
|
|
def eval_libero(args: Args) -> None:
|
|
|
|
|
|
np.random.seed(args.seed)
|
|
|
safety_level = args.safety_level
|
|
|
task_index = args.task_index
|
|
|
episode_index = args.episode_index
|
|
|
|
|
|
benchmark_dict = benchmark.get_benchmark_dict()
|
|
|
|
|
|
task_suite = benchmark_dict[args.task_suite_name](safety_level=safety_level)
|
|
|
|
|
|
|
|
|
num_tasks_in_suite = task_suite.n_tasks
|
|
|
|
|
|
logging.info(f"Task suite: {args.task_suite_name}, safety level: {safety_level}")
|
|
|
|
|
|
pathlib.Path(args.video_out_path).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
if args.task_suite_name == "safelibero_spatial":
|
|
|
max_steps = 10
|
|
|
elif args.task_suite_name == "safelibero_object":
|
|
|
max_steps = 10
|
|
|
elif args.task_suite_name == "safelibero_goal":
|
|
|
max_steps = 10
|
|
|
elif args.task_suite_name == "safelibero_long":
|
|
|
max_steps = 10
|
|
|
else:
|
|
|
raise ValueError(f"Unknown task suite: {args.task_suite_name}")
|
|
|
|
|
|
|
|
|
total_episodes, total_successes = 0, 0
|
|
|
|
|
|
for task_id in tqdm.tqdm(task_index):
|
|
|
|
|
|
task = task_suite.get_task(task_id)
|
|
|
|
|
|
|
|
|
initial_states = task_suite.get_task_init_states(task_id)
|
|
|
|
|
|
|
|
|
env, task_description = _get_libero_env(task, safety_level, LIBERO_ENV_RESOLUTION, args.seed)
|
|
|
|
|
|
|
|
|
task_episodes, task_successes = 0, 0
|
|
|
|
|
|
for episode_idx in tqdm.tqdm(episode_index):
|
|
|
logging.info(f"\nTask: {task_description}")
|
|
|
|
|
|
|
|
|
env.reset()
|
|
|
|
|
|
|
|
|
obs = env.set_init_state(initial_states[episode_idx])
|
|
|
|
|
|
|
|
|
t = 0
|
|
|
replay_images = []
|
|
|
|
|
|
logging.info(f"Starting episode {task_episodes+1}...")
|
|
|
while t < max_steps + args.num_steps_wait:
|
|
|
try:
|
|
|
|
|
|
|
|
|
if t < args.num_steps_wait:
|
|
|
obs, reward, done, info = env.step(LIBERO_DUMMY_ACTION)
|
|
|
t += 1
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
img = np.ascontiguousarray(obs["agentview_image"][::-1, ::-1])
|
|
|
|
|
|
|
|
|
replay_images.append(img)
|
|
|
|
|
|
action = LIBERO_DUMMY_ACTION
|
|
|
|
|
|
|
|
|
obs, reward, done, info = env.step(action)
|
|
|
if done:
|
|
|
task_successes += 1
|
|
|
total_successes += 1
|
|
|
break
|
|
|
t += 1
|
|
|
|
|
|
except Exception as e:
|
|
|
logging.error(f"Caught exception: {e}")
|
|
|
break
|
|
|
|
|
|
task_episodes += 1
|
|
|
total_episodes += 1
|
|
|
|
|
|
|
|
|
suffix = "success" if done else "failure"
|
|
|
task_segment = task_description.replace(" ", "_")
|
|
|
imageio.mimwrite(
|
|
|
pathlib.Path(args.video_out_path) / f"rollout_{task_segment}_{safety_level}_{episode_idx}_{suffix}.mp4",
|
|
|
[np.asarray(x) for x in replay_images],
|
|
|
fps=10,
|
|
|
)
|
|
|
logging.info(f"Saved replay video to {pathlib.Path(args.video_out_path) / f'rollout_{task_segment}_{safety_level}_{episode_idx}_{suffix}.mp4'}")
|
|
|
|
|
|
|
|
|
logging.info(f"Success: {done}")
|
|
|
logging.info(f"# episodes completed so far: {total_episodes}")
|
|
|
logging.info(f"# successes: {total_successes} ({total_successes / total_episodes * 100:.1f}%)")
|
|
|
|
|
|
|
|
|
logging.info(f"Current task success rate: {float(task_successes) / float(task_episodes)}")
|
|
|
logging.info(f"Current total success rate: {float(total_successes) / float(total_episodes)}")
|
|
|
|
|
|
logging.info(f"Total success rate: {float(total_successes) / float(total_episodes)}")
|
|
|
logging.info(f"Total episodes: {total_episodes}")
|
|
|
|
|
|
|
|
|
def _get_libero_env(task, level, resolution, seed):
|
|
|
"""Initializes and returns the LIBERO environment, along with the task description."""
|
|
|
task_description = task.language
|
|
|
task_bddl_file = pathlib.Path(get_libero_path("bddl_files")) / task.problem_folder / task.bddl_file
|
|
|
env_args = {"bddl_file_name": task_bddl_file, "camera_heights": resolution, "camera_widths": resolution}
|
|
|
env = OffScreenRenderEnv(**env_args)
|
|
|
env.seed(seed)
|
|
|
return env, task_description
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
args = tyro.cli(Args)
|
|
|
eval_libero(args) |