Datasets:
Dataset Viewer
Search is not available for this dataset
image
imagewidth (px) 55
1.01k
| label
class label 3
classes |
|---|---|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
|
0cats
|
End of preview. Expand
in Data Studio
Animals Dataset
Dataset Description
This dataset contains images of three animal categories: cats, dogs, and pandas.
Dataset Structure
The dataset is organized into training and testing splits:
Animals_dataset/
├── train/
│ ├── cats/
│ ├── dogs/
│ └── panda/
└── test/
├── cats/
├── dogs/
└── panda/
Dataset Statistics
- Total Images: 600
- Training Images: 480 (80.0%)
- Testing Images: 120 (20.0%)
Class Distribution
Training Set:
- Cats: 160 images
- Dogs: 160 images
- Panda: 160 images
Testing Set:
- Cats: 40 images
- Dogs: 40 images
- Panda: 40 images
Usage
You can load this dataset using the Hugging Face datasets library:
from datasets import load_dataset
# Load the entire dataset
dataset = load_dataset("Melisa13/Animals_dataset")
# Access train and test splits
train_data = dataset['train']
test_data = dataset['test']
Or using custom code:
from huggingface_hub import hf_hub_download
from PIL import Image
import os
# Download a specific file
file_path = hf_hub_download(
repo_id="Melisa13/Animals_dataset",
filename="train/cats/cats_00001.jpg",
repo_type="dataset"
)
# Load image
image = Image.open(file_path)
Dataset Creation
This dataset was split using scikit-learn's train_test_split with:
- Test size: 20.0%
- Random seed: 42
License
MIT License
Citation
If you use this dataset, please cite it appropriately.
- Downloads last month
- 277