Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
55
1.01k
label
class label
3 classes
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
0cats
End of preview. Expand in Data Studio

Animals Dataset

Dataset Description

This dataset contains images of three animal categories: cats, dogs, and pandas.

Dataset Structure

The dataset is organized into training and testing splits:

Animals_dataset/
├── train/
│   ├── cats/
│   ├── dogs/
│   └── panda/
└── test/
    ├── cats/
    ├── dogs/
    └── panda/

Dataset Statistics

  • Total Images: 600
  • Training Images: 480 (80.0%)
  • Testing Images: 120 (20.0%)

Class Distribution

Training Set:

  • Cats: 160 images
  • Dogs: 160 images
  • Panda: 160 images

Testing Set:

  • Cats: 40 images
  • Dogs: 40 images
  • Panda: 40 images

Usage

You can load this dataset using the Hugging Face datasets library:

from datasets import load_dataset

# Load the entire dataset
dataset = load_dataset("Melisa13/Animals_dataset")

# Access train and test splits
train_data = dataset['train']
test_data = dataset['test']

Or using custom code:

from huggingface_hub import hf_hub_download
from PIL import Image
import os

# Download a specific file
file_path = hf_hub_download(
    repo_id="Melisa13/Animals_dataset",
    filename="train/cats/cats_00001.jpg",
    repo_type="dataset"
)

# Load image
image = Image.open(file_path)

Dataset Creation

This dataset was split using scikit-learn's train_test_split with:

  • Test size: 20.0%
  • Random seed: 42

License

MIT License

Citation

If you use this dataset, please cite it appropriately.

Downloads last month
277