|
|
from torch.utils.data import Dataset |
|
|
import numpy as np |
|
|
import copy |
|
|
from torch.utils.data import Dataset |
|
|
|
|
|
class DummyDataset(Dataset): |
|
|
def __init__(self, buffer): |
|
|
self.buffer = buffer |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.buffer) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
return self.buffer[idx] |
|
|
|
|
|
|
|
|
class Transition: |
|
|
def __init__(self, observation, action, reward, next_observation, done, **kwargs): |
|
|
self.observation = observation |
|
|
self.action = action |
|
|
self.reward = np.single(reward) |
|
|
self.next_observation = next_observation |
|
|
|
|
|
if isinstance(done, bool): |
|
|
self.done = done |
|
|
elif done == 'False': |
|
|
self.done = False |
|
|
elif done == 'True': |
|
|
self.done = True |
|
|
else: |
|
|
raise ValueError |
|
|
|
|
|
|
|
|
self.times_was_sampled = 0 |
|
|
def as_dict(self, as_string = False): |
|
|
return { |
|
|
"observation": self.observation, |
|
|
"action": self.action, |
|
|
"reward": self.reward if as_string == False else str(self.reward), |
|
|
"next_observation": self.next_observation, |
|
|
"done": self.done if as_string == False else str(self.done) |
|
|
} |
|
|
def __str__(self): |
|
|
printout = '\n' |
|
|
for key in self.as_dict(): |
|
|
printout += "\n" + key + ':' |
|
|
printout += '\n' + str(self.as_dict()[key]) |
|
|
return printout |
|
|
|
|
|
class Trajectory: |
|
|
def __init__(self): |
|
|
self.transitions = [] |
|
|
self.info = {} |
|
|
def __len__(self): |
|
|
return len(self.transitions) |
|
|
def check_consistency(self): |
|
|
assert(any([transition.done for transition in self.transitions[:-1]]) == False) |
|
|
assert(self.transitions[-1].done == True ) |
|
|
for t in range(1,len(self.transitions)): |
|
|
prior_transition = self.transitions[t-1] |
|
|
current_transition = self.transitions[t] |
|
|
assert(prior_transition.next_observation == current_transition.observation) |
|
|
def get_rewards(self): |
|
|
return [transition.reward for transition in self.transitions] |
|
|
def get_return(self): |
|
|
return sum([transition.reward for transition in self.transitions]) |
|
|
def append(self, transition): |
|
|
assert(self.transitions == [] or self.transitions[-1].done == False) |
|
|
self.transitions.append(Transition(**transition)) |
|
|
def __str__(self): |
|
|
printout = '\n*** Trajectory Begins *** \n' |
|
|
printout += "\nTrajectory Length: " + str(len(self)) |
|
|
for idx, transition in enumerate(self.transitions): |
|
|
printout += "\nTransition: " + str(idx) |
|
|
printout += "\n" + transition.__str__() |
|
|
if self.info != None: |
|
|
printout += "\nFound Special Items" |
|
|
printout += str(self.info) |
|
|
printout += '\n *** Trajectory Ends **** \n' |
|
|
return printout |
|
|
|
|
|
class TrajectoryDataset(Dataset): |
|
|
def __init__(self): |
|
|
self.trajectories = [] |
|
|
self.samples = [] |
|
|
self._last_oar = None |
|
|
def __len__(self): |
|
|
return len(self.samples) |
|
|
def __getitem__(self, idx): |
|
|
self.samples[idx].times_was_sampled += 1 |
|
|
|
|
|
return copy.deepcopy(self.samples[idx].as_dict()) |
|
|
def append_trajectory(self, trajectory: Trajectory): |
|
|
trajectory.check_consistency() |
|
|
assert(self.last_trajectory_reached_end()) |
|
|
for transition in trajectory.transitions: |
|
|
self.append_sample_sequentially(copy.deepcopy(transition.as_dict())) |
|
|
self.trajectories[-1].info = copy.deepcopy(trajectory.info) |
|
|
self.trajectories[-1].check_consistency() |
|
|
def append_observation_action_reward(self, observation, action, reward): |
|
|
if self._last_oar != None: |
|
|
self.append_sample_sequentially({"observation": self._last_oar["observation"], |
|
|
"action": self._last_oar["action"], |
|
|
"reward": self._last_oar["reward"], |
|
|
"next_observation": observation, |
|
|
"done": False }) |
|
|
self._last_oar = {"observation": observation, |
|
|
"action": action, |
|
|
"reward": reward} |
|
|
def append_terminal_observation(self, observation, trajectory_info = None): |
|
|
assert self._last_oar != None |
|
|
self.append_sample_sequentially({"observation": self._last_oar["observation"], |
|
|
"action": self._last_oar["action"], |
|
|
"reward": self._last_oar["reward"], |
|
|
"next_observation": observation, |
|
|
"done": True }) |
|
|
self._last_oar = None |
|
|
if trajectory_info != None: |
|
|
self.trajectories[-1].info = trajectory_info |
|
|
self.trajectories[-1].check_consistency() |
|
|
|
|
|
def last_trajectory_reached_end(self): |
|
|
return (self.trajectories == [] or self.trajectories[-1].transitions[-1].done) |
|
|
|
|
|
def append_sample_sequentially(self, transition): |
|
|
|
|
|
if self.last_trajectory_reached_end(): |
|
|
self.trajectories.append(Trajectory()) |
|
|
self.trajectories[-1].transitions.append(Transition(**transition)) |
|
|
self.samples.append(self.trajectories[-1].transitions[-1]) |
|
|
def nTrajectories(self): |
|
|
return len(self.trajectories) |
|
|
def get_all_trajectory_returns(self): |
|
|
return np.asarray([trajectory.get_return() for trajectory in self.trajectories]) |
|
|
def check_consistency(self): |
|
|
assert (sum([len(trajectory) for trajectory in self.trajectories]) == len(self.samples)) |
|
|
for trajectory in self.trajectories: |
|
|
trajectory.check_consistency() |
|
|
def sample(self, batch_size=None): |
|
|
if batch_size is None: |
|
|
batch_size = self.batch_size |
|
|
rand_indices = np.random.randint(0, len(self.samples), size=(batch_size,)) |
|
|
|
|
|
for idx in rand_indices: |
|
|
self.samples[idx].times_was_sampled += 1 |
|
|
return { |
|
|
"observation": [self.samples[idx].observation for idx in rand_indices], |
|
|
"action": [self.samples[idx].action for idx in rand_indices], |
|
|
"reward": [self.samples[idx].reward for idx in rand_indices], |
|
|
"next_observation": [self.samples[idx].next_observation for idx in rand_indices], |
|
|
"done": [self.samples[idx].done for idx in rand_indices], |
|
|
} |
|
|
def mean_trajectory_return(self): |
|
|
return np.mean(self.get_all_trajectory_returns()) |
|
|
def std_trajectory_return(self): |
|
|
return np.std(self.get_all_trajectory_returns()) |
|
|
def merge(self, dataset): |
|
|
self.check_consistency() |
|
|
dataset.check_consistency() |
|
|
for trajectory in dataset.trajectories: |
|
|
for transition in trajectory.transitions: |
|
|
self.append_sample_sequentially(transition.as_dict()) |
|
|
self.trajectories[-1].info = copy.deepcopy(trajectory.info) |
|
|
self.check_consistency() |
|
|
|
|
|
def __str__(self): |
|
|
printout = '\n \n ' |
|
|
printout += '\n ************************ ' |
|
|
printout += '\n *** Printing Dataset *** ' |
|
|
printout += '\n ************************ ' |
|
|
printout += '\n \n ' |
|
|
printout += '\n Number of Samples : ' + str(len(self)) |
|
|
printout += '\n Dataset Trajectories : ' + str(self.nTrajectories()) + '\n' |
|
|
for idx, trajectory in enumerate(self.trajectories): |
|
|
printout += "\n >>> Trajectory id: " + str(idx) + '\n' |
|
|
printout += trajectory.__str__() |
|
|
if self._last_oar != None: |
|
|
printout += "\n !!! Found incomplete transition !!! \n" |
|
|
for key in self._last_oar: |
|
|
printout += key + '\n' |
|
|
printout += str(self._last_oar[key]) + "\n" |
|
|
printout += '\n ************************ ' |
|
|
printout += '\n *** Dataset Printed *** ' |
|
|
printout += '\n ************************ ' |
|
|
return printout |
|
|
|
|
|
def keep_top_fraction_of_trajectories(self, fraction: float, from_high_to_low = True): |
|
|
self.sort(from_high_to_low=from_high_to_low) |
|
|
trajectories = self.trajectories |
|
|
import math |
|
|
nTraj_to_keep = int(fraction * self.nTrajectories()) |
|
|
self.__init__() |
|
|
for i in range(nTraj_to_keep): |
|
|
self.append_trajectory(trajectories[i]) |
|
|
print("*** Kept ", self.nTrajectories(), " trajectories") |
|
|
|
|
|
def keep_bottom_fraction_of_trajectories(self, fraction: float): |
|
|
self.keep_top_fraction_of_trajectories(fraction=fraction, from_high_to_low=False) |
|
|
|
|
|
|
|
|
def max_trajectory_return(self): |
|
|
return max(self.get_all_trajectory_returns()) |
|
|
|
|
|
def argmax_trajectory_return(self): |
|
|
return np.argmax(self.get_all_trajectory_returns()) |
|
|
|
|
|
def min_trajectory_return(self): |
|
|
return min(self.get_all_trajectory_returns()) |
|
|
|
|
|
def argmin_trajectory_return(self): |
|
|
return np.argmin(self.get_all_trajectory_returns()) |
|
|
|
|
|
def sort(self, from_high_to_low): |
|
|
print("Warning: new dataset created!") |
|
|
returns = [trajectory.get_return() for trajectory in self.trajectories] |
|
|
sorted_trajectories = sort_list(self.trajectories, returns, from_high_to_low) |
|
|
self.__init__() |
|
|
for traj in sorted_trajectories: |
|
|
self.append_trajectory(traj) |
|
|
|
|
|
|
|
|
def set_all_rewards_to_value(self, value): |
|
|
for sample in self.samples: |
|
|
sample.reward = np.single(value) |
|
|
|
|
|
def scale_all_rewards_by_value(self, value): |
|
|
for sample in self.samples: |
|
|
sample.reward *= np.single(value) |
|
|
|
|
|
def add_value_to_all_rewards(self, value): |
|
|
for sample in self.samples: |
|
|
sample.reward += np.single(value) |
|
|
|
|
|
def increase_final_reward_by_value(self, value): |
|
|
for trajectory in self.trajectories: |
|
|
trajectory.transitions[-1].reward += np.single(value) |
|
|
|
|
|
def append_eos_token_to_all_actions(self, eos_token): |
|
|
for sample in self.samples: |
|
|
sample.action += eos_token |
|
|
|
|
|
def push_all_rewards_at_the_end_of_the_trajectory(self): |
|
|
for trajectory in self.trajectories: |
|
|
trajectory.transitions[-1].reward = np.single(trajectory.get_return()) |
|
|
for transition in trajectory.transitions[:-1]: |
|
|
transition.reward = np.single(0) |
|
|
assert(- len(trajectory) == trajectory.get_return() == trajectory.transitions[-1].reward) |
|
|
|
|
|
def save(self, filename): |
|
|
import json |
|
|
self.check_consistency() |
|
|
with open(filename, "w") as final: |
|
|
json.dump([sample.as_dict(as_string = True) for sample in self.samples], final) |
|
|
|
|
|
def load(self, filename): |
|
|
import json |
|
|
with open(filename, "r") as final: |
|
|
data = json.load(final) |
|
|
for sample in data: |
|
|
self.append_sample_sequentially(sample) |
|
|
|
|
|
def times_was_sampled(self): |
|
|
return [sample.times_was_sampled for sample in self.samples] |
|
|
|
|
|
def keep_only_trajectories_with_exact_key_and_value(self, key, value): |
|
|
trajectories = self.trajectories |
|
|
new_dataset = TrajectoryDataset() |
|
|
for trajectory in trajectories: |
|
|
if trajectory.info[key] == value: |
|
|
new_dataset.append_trajectory(trajectory) |
|
|
return new_dataset |
|
|
|
|
|
def construct_tabular_state_action_space(self): |
|
|
self.state_space = Counter() |
|
|
self.action_space = Counter() |
|
|
self.state_action_space = Counter() |
|
|
for sample in self.samples: |
|
|
self.state_space.add(sample.observation) |
|
|
self.action_space.add(sample.action) |
|
|
self.state_action_space.add((sample.observation, sample.action)) |
|
|
|
|
|
def assert_deterministic(self): |
|
|
successor_states = {} |
|
|
rewards = {} |
|
|
for sample in self.samples: |
|
|
sa = (sample.observation, sample.action) |
|
|
|
|
|
if sa not in rewards: |
|
|
rewards[sa] = sample.reward |
|
|
|
|
|
else: |
|
|
assert(rewards[sa] == sample.reward) |
|
|
|
|
|
if sample.done: |
|
|
continue |
|
|
|
|
|
if sa not in successor_states: |
|
|
successor_states[sa] = sample.next_observation |
|
|
else: |
|
|
assert(successor_states[sa] == sample.next_observation) |
|
|
|
|
|
class Counter(): |
|
|
def __init__(self): |
|
|
self.register = {} |
|
|
def add(self, item): |
|
|
if item not in self.register: |
|
|
self.register[item] = 1 |
|
|
else: |
|
|
self.register[item] += 1 |
|
|
def contains(self, item): |
|
|
return item in self.register |
|
|
|
|
|
def n_samples(self, item): |
|
|
return self.register[item] |
|
|
|
|
|
class EmptyDataset(): |
|
|
def __init__(self, length): |
|
|
self.length = length |
|
|
|
|
|
def __len__(self): |
|
|
return self.length |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
return [0] |
|
|
|
|
|
def sort_list(list1, list2, from_high_to_low): |
|
|
|
|
|
return [val for (_, val) in sorted(zip(list2, list1), key=lambda x: x[0], reverse=from_high_to_low)] |
|
|
|