from torch.utils.data import Dataset import numpy as np import copy from torch.utils.data import Dataset class DummyDataset(Dataset): def __init__(self, buffer): self.buffer = buffer def __len__(self): return len(self.buffer) def __getitem__(self, idx): return self.buffer[idx] class Transition: def __init__(self, observation, action, reward, next_observation, done, **kwargs): self.observation = observation self.action = action self.reward = np.single(reward) self.next_observation = next_observation if isinstance(done, bool): self.done = done elif done == 'False': self.done = False elif done == 'True': self.done = True else: raise ValueError # internal, to see how many times a certain transition was sampled self.times_was_sampled = 0 def as_dict(self, as_string = False): return { "observation": self.observation, "action": self.action, "reward": self.reward if as_string == False else str(self.reward), "next_observation": self.next_observation, "done": self.done if as_string == False else str(self.done) } def __str__(self): printout = '\n' for key in self.as_dict(): printout += "\n" + key + ':' printout += '\n' + str(self.as_dict()[key]) return printout class Trajectory: def __init__(self): self.transitions = [] self.info = {} def __len__(self): return len(self.transitions) def check_consistency(self): assert(any([transition.done for transition in self.transitions[:-1]]) == False) # should not be done until the end assert(self.transitions[-1].done == True ) for t in range(1,len(self.transitions)): prior_transition = self.transitions[t-1] current_transition = self.transitions[t] assert(prior_transition.next_observation == current_transition.observation) def get_rewards(self): return [transition.reward for transition in self.transitions] def get_return(self): return sum([transition.reward for transition in self.transitions]) def append(self, transition): assert(self.transitions == [] or self.transitions[-1].done == False) self.transitions.append(Transition(**transition)) def __str__(self): printout = '\n*** Trajectory Begins *** \n' printout += "\nTrajectory Length: " + str(len(self)) for idx, transition in enumerate(self.transitions): printout += "\nTransition: " + str(idx) printout += "\n" + transition.__str__() if self.info != None: printout += "\nFound Special Items" printout += str(self.info) printout += '\n *** Trajectory Ends **** \n' return printout class TrajectoryDataset(Dataset): def __init__(self): self.trajectories = [] self.samples = [] # pointer list for fast sampling self._last_oar = None # Last (observation, action, reward) for sequential addition def __len__(self): return len(self.samples) def __getitem__(self, idx): self.samples[idx].times_was_sampled += 1 ### Must return a copy to avoid issues if further processing is done return copy.deepcopy(self.samples[idx].as_dict()) def append_trajectory(self, trajectory: Trajectory): trajectory.check_consistency() assert(self.last_trajectory_reached_end()) for transition in trajectory.transitions: self.append_sample_sequentially(copy.deepcopy(transition.as_dict())) self.trajectories[-1].info = copy.deepcopy(trajectory.info) self.trajectories[-1].check_consistency() def append_observation_action_reward(self, observation, action, reward): if self._last_oar != None: self.append_sample_sequentially({"observation": self._last_oar["observation"], "action": self._last_oar["action"], "reward": self._last_oar["reward"], "next_observation": observation, "done": False }) self._last_oar = {"observation": observation, "action": action, "reward": reward} def append_terminal_observation(self, observation, trajectory_info = None): assert self._last_oar != None self.append_sample_sequentially({"observation": self._last_oar["observation"], "action": self._last_oar["action"], "reward": self._last_oar["reward"], "next_observation": observation, "done": True }) self._last_oar = None if trajectory_info != None: self.trajectories[-1].info = trajectory_info self.trajectories[-1].check_consistency() def last_trajectory_reached_end(self): return (self.trajectories == [] or self.trajectories[-1].transitions[-1].done) def append_sample_sequentially(self, transition): ### is the trajectory new? if self.last_trajectory_reached_end(): self.trajectories.append(Trajectory()) self.trajectories[-1].transitions.append(Transition(**transition)) self.samples.append(self.trajectories[-1].transitions[-1]) def nTrajectories(self): return len(self.trajectories) def get_all_trajectory_returns(self): return np.asarray([trajectory.get_return() for trajectory in self.trajectories]) def check_consistency(self): assert (sum([len(trajectory) for trajectory in self.trajectories]) == len(self.samples)) for trajectory in self.trajectories: trajectory.check_consistency() def sample(self, batch_size=None): if batch_size is None: batch_size = self.batch_size rand_indices = np.random.randint(0, len(self.samples), size=(batch_size,)) # rand_indices = [np.random.randint(0, len(self.samples)) for _ in range(batch_size)] for idx in rand_indices: self.samples[idx].times_was_sampled += 1 return { "observation": [self.samples[idx].observation for idx in rand_indices], "action": [self.samples[idx].action for idx in rand_indices], "reward": [self.samples[idx].reward for idx in rand_indices], "next_observation": [self.samples[idx].next_observation for idx in rand_indices], "done": [self.samples[idx].done for idx in rand_indices], } def mean_trajectory_return(self): return np.mean(self.get_all_trajectory_returns()) def std_trajectory_return(self): return np.std(self.get_all_trajectory_returns()) def merge(self, dataset): self.check_consistency() dataset.check_consistency() for trajectory in dataset.trajectories: for transition in trajectory.transitions: self.append_sample_sequentially(transition.as_dict()) self.trajectories[-1].info = copy.deepcopy(trajectory.info) self.check_consistency() # assert(self.batch_size == dataset.batch_size) def __str__(self): printout = '\n \n ' printout += '\n ************************ ' printout += '\n *** Printing Dataset *** ' printout += '\n ************************ ' printout += '\n \n ' printout += '\n Number of Samples : ' + str(len(self)) printout += '\n Dataset Trajectories : ' + str(self.nTrajectories()) + '\n' for idx, trajectory in enumerate(self.trajectories): printout += "\n >>> Trajectory id: " + str(idx) + '\n' printout += trajectory.__str__() if self._last_oar != None: printout += "\n !!! Found incomplete transition !!! \n" for key in self._last_oar: printout += key + '\n' printout += str(self._last_oar[key]) + "\n" printout += '\n ************************ ' printout += '\n *** Dataset Printed *** ' printout += '\n ************************ ' return printout def keep_top_fraction_of_trajectories(self, fraction: float, from_high_to_low = True): self.sort(from_high_to_low=from_high_to_low) trajectories = self.trajectories import math nTraj_to_keep = int(fraction * self.nTrajectories()) self.__init__() for i in range(nTraj_to_keep): self.append_trajectory(trajectories[i]) print("*** Kept ", self.nTrajectories(), " trajectories") def keep_bottom_fraction_of_trajectories(self, fraction: float): self.keep_top_fraction_of_trajectories(fraction=fraction, from_high_to_low=False) def max_trajectory_return(self): return max(self.get_all_trajectory_returns()) def argmax_trajectory_return(self): return np.argmax(self.get_all_trajectory_returns()) def min_trajectory_return(self): return min(self.get_all_trajectory_returns()) def argmin_trajectory_return(self): return np.argmin(self.get_all_trajectory_returns()) def sort(self, from_high_to_low): print("Warning: new dataset created!") returns = [trajectory.get_return() for trajectory in self.trajectories] sorted_trajectories = sort_list(self.trajectories, returns, from_high_to_low) self.__init__() for traj in sorted_trajectories: self.append_trajectory(traj) # useful to set all rewards to eg -1 and encourage reaching the goal faster def set_all_rewards_to_value(self, value): for sample in self.samples: sample.reward = np.single(value) def scale_all_rewards_by_value(self, value): for sample in self.samples: sample.reward *= np.single(value) def add_value_to_all_rewards(self, value): for sample in self.samples: sample.reward += np.single(value) def increase_final_reward_by_value(self, value): for trajectory in self.trajectories: trajectory.transitions[-1].reward += np.single(value) def append_eos_token_to_all_actions(self, eos_token): for sample in self.samples: sample.action += eos_token def push_all_rewards_at_the_end_of_the_trajectory(self): for trajectory in self.trajectories: trajectory.transitions[-1].reward = np.single(trajectory.get_return()) for transition in trajectory.transitions[:-1]: transition.reward = np.single(0) assert(- len(trajectory) == trajectory.get_return() == trajectory.transitions[-1].reward) def save(self, filename): import json self.check_consistency() with open(filename, "w") as final: json.dump([sample.as_dict(as_string = True) for sample in self.samples], final) def load(self, filename): import json with open(filename, "r") as final: data = json.load(final) for sample in data: self.append_sample_sequentially(sample) def times_was_sampled(self): return [sample.times_was_sampled for sample in self.samples] def keep_only_trajectories_with_exact_key_and_value(self, key, value): trajectories = self.trajectories new_dataset = TrajectoryDataset() for trajectory in trajectories: if trajectory.info[key] == value: new_dataset.append_trajectory(trajectory) return new_dataset def construct_tabular_state_action_space(self): self.state_space = Counter() self.action_space = Counter() self.state_action_space = Counter() for sample in self.samples: self.state_space.add(sample.observation) self.action_space.add(sample.action) self.state_action_space.add((sample.observation, sample.action)) def assert_deterministic(self): successor_states = {} rewards = {} for sample in self.samples: sa = (sample.observation, sample.action) if sa not in rewards: rewards[sa] = sample.reward else: assert(rewards[sa] == sample.reward) if sample.done: # end transition may be ill-defined continue if sa not in successor_states: successor_states[sa] = sample.next_observation else: assert(successor_states[sa] == sample.next_observation) class Counter(): def __init__(self): self.register = {} def add(self, item): if item not in self.register: self.register[item] = 1 else: self.register[item] += 1 def contains(self, item): return item in self.register def n_samples(self, item): return self.register[item] class EmptyDataset(): def __init__(self, length): self.length = length def __len__(self): return self.length def __getitem__(self, idx): return [0] def sort_list(list1, list2, from_high_to_low): # Sorting the List1 based on List2 return [val for (_, val) in sorted(zip(list2, list1), key=lambda x: x[0], reverse=from_high_to_low)]