OfflineArcher / Algorithms.py
Jessie09's picture
Upload dataset
8014d08 verified
import lightning as L
from lightning.pytorch.utilities import rank_zero_only
import torch
import os
import gc
torch.set_float32_matmul_precision("high")
from SimulateOnEnv import batch_simulate_on_environment
from lightning.pytorch.callbacks import Callback
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from typing import Optional
from peft import LoraConfig, TaskType, get_peft_model, PeftModel
from safetensors import safe_open
from safetensors.torch import save_file
def safe_load(path):
"""安全加载权重,处理大小不匹配"""
result = {}
with safe_open(path, framework="pt") as f:
for key in f.keys():
try:
result[key] = f.get_tensor(key)
except Exception as e:
print(f"Error loading {key}: {str(e)}")
return result
def set_special_tokens(model, tokenizer):
if tokenizer.pad_token is None and tokenizer.pad_token_id is None:
print_rank_0(f"[WARNING] the pad token of the tokenizer is None")
# We do not resize the vocab embedding, since it ruins the KL value with the ref_model
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
# tokenizer.pad_token = tokenizer.decode(0)
model.config.pad_token_id = tokenizer.pad_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
return model, tokenizer
def load_model_and_tokenizer(model_name_or_path, actor_checkpoint=None):
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
use_cache=False,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
if hasattr(model, "ref_model"):
del model.ref_model
lora_config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM,
)
model = get_peft_model(model, lora_config)
if actor_checkpoint is not None:
weight_map = {}
with safe_open(actor_checkpoint, framework="pt") as f:
for key in f.keys():
new_key = key.replace("base_model.model.", "")
weight_map[new_key] = f.get_tensor(key)
# 应用权重
for name, param in model.named_parameters():
for key, tensor in weight_map.items():
if key in name and param.shape == tensor.shape:
param.data.copy_(tensor)
print(f"加载权重: {name} <- {key}")
break
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
padding_side="left", # for batch decode
truncation_side="left",
model_max_length=1024,
trust_remote_code=True,
)
model.gradient_checkpointing_enable()
model, tokenizer = set_special_tokens(model, tokenizer)
return model, tokenizer
class ActorModel(torch.nn.Module):
def __init__(self, get_device, model_name_or_path, actor_checkpoint=None):
super().__init__()
self.get_device = get_device
self.model, self.tokenizer = load_model_and_tokenizer(model_name_or_path, actor_checkpoint)
def forward(self, observation, do_sample=True):
obs_ids = self.tokenizer(
observation,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
).to(self.model.device)
obs_embeds = self.model.get_input_embeddings()(obs_ids["input_ids"])
outputs = self.model.generate(
inputs_embeds=obs_embeds,
attention_mask=obs_ids["attention_mask"],
max_new_tokens=32,
do_sample=do_sample,
pad_token_id=self.tokenizer.eos_token_id,
)
action = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
return action
def behavioral_cloning_loss(self, observation, action, **kwargs):
logsum_probs = self.get_logsum_prob(
observation, action
) # this line has been refactored and not tested
loss = -logsum_probs.mean()
return loss, {"behavioral_cloning/loss": loss.detach()}
def get_logsum_prob(self, observation, action_from_dataloader, **kwargs):
action = [a + self.tokenizer.eos_token for a in action_from_dataloader]
alltext = [obs + a for obs, a in zip(observation, action)]
generated_probabilities = self.to_tokens_and_logprobs(alltext)
assert (
len(generated_probabilities)
== len(alltext)
== len(observation)
== len(action)
)
mask = torch.zeros_like(generated_probabilities.detach(), dtype=torch.bool)
for i, (obs, act, text) in enumerate(zip(observation, action, alltext)):
assert text == obs + act
act_ids = self.tokenizer(act, return_tensors="pt", padding=True)
txt_ids = self.tokenizer(text, return_tensors="pt", padding=True)
n_token_act = len(
act_ids["input_ids"][0]
) # [0] because the batch is one inside the foor loop
n_token_txt = len(txt_ids["input_ids"][0])
mask[i, n_token_txt - n_token_act - 1 : n_token_txt - 1] = (
True # the -1 shift is due to the the generated probabilities being shifted
)
generated_probabilities = torch.where(mask, generated_probabilities, 1.0)
log_probs = torch.where(
mask, torch.log(generated_probabilities), 0.0
) # must be separate from the line above for numerical stability (cannot take log(0.0))
logsum_probs = torch.sum(log_probs, dim=1)
del act_ids, txt_ids, log_probs, generated_probabilities
return logsum_probs
def to_tokens_and_logprobs(self, input_texts):
input_ids = self.tokenizer(
input_texts, padding=True, truncation=True, return_tensors="pt"
).input_ids.to(self.get_device())
outputs = self.model(input_ids)
probs = torch.softmax(outputs.logits, dim=-1)
# collect the probability of the generated token -- probability at index 0 corresponds to the token at index 1
probs = probs[:, :-1, :]
input_ids = input_ids[:, 1:]
gen_probs = torch.gather(probs, 2, input_ids[:, :, None]).squeeze(-1)
del outputs, probs
torch.cuda.empty_cache()
gc.collect()
torch.cuda.memory._set_allocator_settings('max_split_size_mb:32')
return gen_probs
class RobertaCritic(torch.nn.Module):
def __init__(
self,
get_device,
discount_factor: float,
tau: float,
expectile: float,
from_checkpoint=None,
):
super().__init__()
self.get_device = get_device
self.discount_factor = discount_factor
self.tau = tau
self.expectile = expectile
### Define the Critic
from ArcherCritic import ArcherDoubleCritic
self.critic = ArcherDoubleCritic(in_dim=768, out_dim=1)
self.target_critic = ArcherDoubleCritic(in_dim=768, out_dim=1)
self.soft_update_target_critic(1)
if from_checkpoint is not None:
checkpoint = torch.load(from_checkpoint, map_location=torch.device("cpu"))
weights = {
k.removeprefix("critic."): v
for k, v in checkpoint["state_dict"].items()
if k.startswith("critic.")
}
self.load_state_dict(weights)
print(
"I have initialized the critic from the checkpoint: ", from_checkpoint
)
### Miscellaneus Shortcuts
self.softmax = torch.nn.Softmax(dim=-1)
self.td_criterion = torch.nn.MSELoss()
self.expectile_criterion = lambda diff: self.loss_value_diff(
diff=diff, expectile=self.expectile
)
def get_q(self, observation, action, detach_model=False):
return self.critic.get_q(observation, action, detach_model=detach_model)
def get_v(self, inputs, detach_model=False):
return self.critic.get_v(inputs, detach_model=detach_model)
def get_target_v(self, inputs, detach_model=False):
return self.target_critic.get_v(inputs, detach_model=detach_model)
def get_target_q(self, observation, action, detach_model=False):
return self.target_critic.get_q(observation, action, detach_model=detach_model)
def get_advantages(self, observation, action):
q1, q2 = self.get_q(observation, action)
v1, v2 = self.get_v(observation)
q = torch.minimum(q1, q2)
v = torch.minimum(v1, v2)
advantages = q - v
return advantages
def argmax_advantage(self, observation, get_available_actions):
argmax_actions = []
for obs in observation:
available_actions = get_available_actions(obs)
advantages = torch.as_tensor(
[self.get_advantages([obs], [action]) for action in available_actions]
)
action = available_actions[torch.argmax(advantages)]
argmax_actions.append(action)
return argmax_actions
def soft_update_target_critic(self, tau=None):
if tau == None:
tau = self.tau
for target_param, param in zip(
self.target_critic.parameters(), self.critic.parameters()
):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def iql_loss(self, observation, action, reward, next_observation, done, **kwargs):
### Fitting the Q function
q1, q2 = self.get_q(observation, action, detach_model=False)
q1 = q1.flatten()
q2 = q2.flatten()
reward = torch.Tensor(reward) # .to(self.agent.device)
done = torch.Tensor(done) # .to(self.agent.device)
with torch.no_grad():
target_v1, target_v2 = self.get_target_v(next_observation)
target_v1 = (
reward
+ torch.logical_not(done) * target_v1.flatten() * self.discount_factor
)
target_v2 = (
reward
+ torch.logical_not(done) * target_v2.flatten() * self.discount_factor
)
q1_loss = self.td_criterion(q1, target_v1)
q2_loss = self.td_criterion(q2, target_v2)
### Fitting the value function
with torch.no_grad():
target_q1, target_q2 = self.get_target_q(
observation, action, detach_model=False
)
target_q1 = target_q1.flatten()
target_q2 = target_q2.flatten()
v1, v2 = self.get_v(observation, detach_model=False)
v1 = v1.flatten()
v2 = v2.flatten()
v1_loss = self.expectile_criterion(diff=target_q1.detach() - v1)
v2_loss = self.expectile_criterion(diff=target_q2.detach() - v2)
loss = q1_loss + q2_loss + v1_loss + v2_loss
### Log and print what's happening
log = self.get_log(
q1=q1,
q2=q2,
v1=v1,
v2=v2,
q1_loss=q1_loss,
q2_loss=q2_loss,
v1_loss=v1_loss,
v2_loss=v2_loss,
target_q1=target_q1,
target_q2=target_q2,
)
return loss, log
def loss_value_diff(self, diff, expectile):
"""Loss function for iql expectile value difference."""
weight = torch.where(diff > 0, expectile, (1 - expectile))
return (weight * (diff**2)).mean()
def get_log(
self, q1, q2, v1, v2, q1_loss, q2_loss, v1_loss, v2_loss, target_q1, target_q2
):
return {
"critic/q1.loss": q1_loss.detach(),
"critic/q2.loss": q2_loss.detach(),
"critic/v1.loss": v1_loss.detach(),
"critic/v2.loss": v2_loss.detach(),
"critic/q1.mean": torch.mean(q1).detach(),
"critic/q1.min": torch.min(q1).detach(),
"critic/q1.max": torch.max(q1).detach(),
"critic/q2.mean": torch.mean(q2).detach(),
"critic/q2.max": torch.max(q2).detach(),
"critic/q2.min": torch.min(q2).detach(),
"critic/v1.mean": torch.mean(v1).detach(),
"critic/v1.min": torch.min(v1).detach(),
"critic/v1.max": torch.max(v1).detach(),
"critic/v2.mean": torch.mean(v2).detach(),
"critic/v2.max": torch.max(v2).detach(),
"critic/v2.min": torch.min(v2).detach(),
"critic/target_q1.mean": torch.mean(target_q1).detach(),
"critic/target_q1.min": torch.min(target_q1).detach(),
"critic/target_q1.max": torch.max(target_q1).detach(),
"critic/target_q2.mean": torch.mean(target_q2).detach(),
"critic/target_q2.max": torch.max(target_q2).detach(),
"critic/target_q2.min": torch.min(target_q2).detach(),
}
class Agent(L.LightningModule):
def validation_step(self, batch, batch_idx):
# Perform evaluation on environment with stochastic policy
return None
eval_dataset = batch_simulate_on_environment(
policy=lambda obs: self.forward(obs), env=None
)
self.log(
"eval/avg_return", eval_dataset.mean_trajectory_return(), sync_dist=True
)
self.log(
"eval/std_return", eval_dataset.std_trajectory_return(), sync_dist=True
)
# Perform evaluation on environment with deterministic policy
deterministic_eval_dataset = batch_simulate_on_environment(
policy=lambda obs: self.forward(obs, do_sample=False),
env=None,
)
self.log(
"eval/avg_return_deterministic",
deterministic_eval_dataset.mean_trajectory_return(),
sync_dist=True,
)
self.log(
"eval/std_return_deterministic",
deterministic_eval_dataset.std_trajectory_return(),
sync_dist=True,
)
return eval_dataset.mean_trajectory_return()
class BehaviouralCloning(Agent):
def __init__(self, lr: float):
super().__init__() # Initialize LLM base class
self.save_hyperparameters()
### Config
self.lr = lr
### Initialization
self.agent = ActorModel(get_device=lambda: self.device)
def forward(self, observation, **kwargs):
return self.agent.forward(observation, **kwargs)
def training_step(self, batch, batch_idx):
loss, log = self.agent.behavioral_cloning_loss(**batch)
self.log_dict(log, sync_dist=True)
return loss
def configure_optimizers(self):
from torch.optim import Adam
# 收集所有需要优化的参数
optimizer_params = [
{"params": self.actor.model.parameters(), "lr": self.actor_lr},
]
# 如果需要优化critic,添加其参数
if self.optimize_critic:
optimizer_params.append({
"params": self.critic.critic.parameters(),
"lr": self.critic_lr
})
# 创建单个优化器
optimizer = Adam(optimizer_params)
return optimizer
class FilteredBehaviouralCloning(BehaviouralCloning):
def __init__(self, lr: float, filter: float):
super().__init__(lr)
self.filter = filter
def configure_callbacks(self):
return FilterDataset(filter=self.filter)
class FilterDataset(Callback):
def __init__(self, filter: float):
self.filter = filter
def on_fit_start(self, trainer, algorithm):
print("*** Filtering Dataset ***")
dataset = trainer.datamodule.dataset
print("Statistics of Input Dataset")
print("Number of Trajectories:", dataset.nTrajectories())
print("Number of Trajectories:", len(dataset))
dataset.keep_top_fraction_of_trajectories(fraction=self.filter)
trainer.datamodule.dataset = dataset
print("Statistics of Filtered Dataset")
print("Number of Trajectories:", dataset.nTrajectories())
print("Number of Trajectories:", len(dataset))
class ActorCritic(Agent):
def __init__(
self,
model_name_or_path: str,
actor_lr: float,
critic_lr: float,
tau: float,
accumulate_grad_batches: int,
discount_factor: float,
critic_expectile: float,
optimize_critic: bool,
actor_checkpoint=None,
critic_checkpoint=None,
**kwargs
):
super().__init__() # Initialize LLM base class
self.example_input_array = (torch.zeros(1, 1, dtype=torch.long),)
self.save_hyperparameters()
### Config
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.discount_factor = discount_factor
self.tau = tau
### Manual Gradient Accumulation
self.accumulate_grad_batches = accumulate_grad_batches
self.automatic_optimization = False
### Initialization
self.actor = ActorModel(
get_device=lambda: self.device, model_name_or_path=model_name_or_path, actor_checkpoint=actor_checkpoint
)
self.critic = RobertaCritic(
get_device=lambda: self.device,
discount_factor=discount_factor,
tau=tau,
expectile=critic_expectile,
from_checkpoint=critic_checkpoint,
)
self.actor_current_backward_step = 0
self.critic_current_backward_step = 0
self.critic_warmup_gradient_steps = 0
self.optimize_actor = lambda: (
True
if self.critic_current_backward_step // self.accumulate_grad_batches
>= self.critic_warmup_gradient_steps
else False
)
self.optimize_critic = lambda: optimize_critic
def forward(self, observation, **kwargs):
action = self.actor.forward(observation, **kwargs)
return action
def training_step(self, batch, batch_idx):
# if batch_idx == 3:
# return
optimizer = self.optimizers()
mem = torch.cuda.memory_allocated() / torch.cuda.get_device_properties(0).total_memory
if mem > 0.8:
gc.collect()
torch.cuda.empty_cache()
if self.optimize_critic():
# scale losses by 1/N (for N batches of gradient accumulation)
critic_loss, critic_log = self.critic_loss(batch)
critic_loss /= self.accumulate_grad_batches
self.manual_backward(critic_loss)
self.critic_current_backward_step += 1
self.log_dict(critic_log, sync_dist=True)
# accumulate gradients of N batches
if self.critic_current_backward_step % self.accumulate_grad_batches == 0:
optimizer.step()
optimizer.zero_grad()
self.critic.soft_update_target_critic(self.tau)
if self.optimize_actor():
# scale losses by 1/N (for N batches of gradient accumulation)
actor_loss, actor_log = self.actor_loss(batch)
actor_loss /= self.accumulate_grad_batches
self.manual_backward(actor_loss)
self.actor_current_backward_step += 1
self.log_dict(actor_log, sync_dist=True)
# accumulate gradients of N batches
if self.actor_current_backward_step % self.accumulate_grad_batches == 0:
optimizer.step()
optimizer.zero_grad()
def get_actor_log(self, loss, advantages, log_prob):
return {
"actor/loss": loss.detach(),
"actor/advantages.mean": advantages.detach().mean(),
"actor/advantages.max": torch.max(advantages.detach()),
"actor/advantages.min": torch.min(advantages.detach()),
"actor/log_prob.mean": torch.mean(log_prob.detach()),
"actor/log_prob.max": torch.max(log_prob.detach()),
"actor/log_prob.min": torch.min(log_prob.detach()),
}
def configure_optimizers(self):
from torch.optim import Adam
optimizer_params = []
if hasattr(self, 'actor') and hasattr(self.actor, 'parameters'):
optimizer_params.append({
"params": self.actor.parameters(),
"lr": self.actor_lr
})
if self.optimize_critic and hasattr(self, 'critic') and hasattr(self.critic, 'parameters'):
optimizer_params.append({
"params": self.critic.parameters(),
"lr": self.critic_lr
})
if not optimizer_params:
return None
optimizer = Adam(optimizer_params)
return optimizer
class OfflineArcher(ActorCritic):
def __init__(
self,
model_name_or_path: str,
inv_temp: float,
actor_lr: float,
critic_lr: float,
tau: float,
accumulate_grad_batches: int,
discount_factor: float,
critic_expectile: float,
optimize_critic: bool,
actor_checkpoint: Optional[str] = None,
critic_checkpoint: Optional[str] = None,
**kwargs
):
super().__init__(
model_name_or_path=model_name_or_path,
actor_lr=actor_lr,
critic_lr=critic_lr,
tau=tau,
accumulate_grad_batches=accumulate_grad_batches,
discount_factor=discount_factor,
critic_expectile=critic_expectile,
optimize_critic=optimize_critic,
actor_checkpoint=actor_checkpoint,
critic_checkpoint=critic_checkpoint,
**kwargs
)
self.inv_temp = inv_temp
self.actor_loss = lambda batch: self.awr_loss(**batch)
self.critic_loss = lambda batch: self.critic.iql_loss(**batch)
def awr_loss(self, observation, action, **kwargs):
log_prob = self.actor.get_logsum_prob(observation, action)
with torch.no_grad():
advantages = self.critic.get_advantages(observation, action)
advantages = advantages.flatten()
log_prob = log_prob.flatten()
factor = torch.exp(self.inv_temp * advantages)
loss_batch = -factor * log_prob
loss = loss_batch.mean()
# ### Log and print what's happening
log = self.get_actor_log(loss=loss, advantages=advantages, log_prob=log_prob)
log = {
**log,
**{
"actor/factor.mean": factor.detach().mean(),
"actor/factor.max": torch.max(factor.detach()),
"actor/factor.min": torch.min(factor.detach()),
},
}
return loss, log
def configure_optimizers(self):
# 直接调用基类方法
return super().configure_optimizers()
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
"""保存 LoRA 适配器权重"""
super().on_save_checkpoint(checkpoint)
save_dir = self.trainer.default_root_dir
os.makedirs(save_dir, exist_ok=True)
# 保存 LoRA 适配器
if hasattr(self.actor.model, "save_pretrained"):
self.actor.model.save_pretrained(save_dir)
# 保存 tokenizer
if hasattr(self.actor, "tokenizer"):
self.actor.tokenizer.save_pretrained(save_dir)
print(f"✅ LoRA adapter saved to: {save_dir}")
self.merge_and_save_lora(os.path.join(save_dir, "merged_model"))
def merge_and_save_lora(self, save_dir):
"""
Merge the LoRA adapter weights into the base model and save the merged model and tokenizer.
"""
# Only proceed if the actor model has the correct method
try:
# 确保模型在CPU上且处于eval模式
original_device = next(self.actor.model.parameters()).device
self.actor.model.to('cpu')
self.actor.model.eval()
if hasattr(self.actor.model, "merge_and_unload"):
# 执行合并
merged_model = self.actor.model.merge_and_unload()
# 检查合并结果
from peft import PeftModel
if isinstance(merged_model, PeftModel):
print(">>> [Warning] Still a PeftModel after merge. Using base_model.model...")
merged_model = merged_model.base_model.model
# 保存合并后的模型
merged_model.save_pretrained(os.path.join(save_dir, "merged_model"))
print(f"✅ Merged model saved to: {os.path.join(save_dir, 'merged_model')}")
else:
print("❌ merge_and_unload method not found in actor.model. Cannot merge LoRA weights.")
except Exception as e:
print(f"❌ Error merging LoRA weights: {e}")
import traceback
traceback.print_exc()
finally:
# 恢复原始设备
self.actor.model.to(original_device)
class IQLKL(ActorCritic):
def __init__(self, kl_coeff: float, reference_actor_path, **kwargs):
super().__init__(**kwargs)
self.kl_coeff = kl_coeff
self.reference_actor = ActorModel(
get_device=lambda: self.device, from_checkpoint=reference_actor_path
)
self.actor_loss = lambda batch: self.advantage_kl_loss(**batch)
self.critic_loss = lambda batch: self.critic.iql_loss(**batch)
def advantage_kl_loss(self, observation, **kwargs):
reinforce_loss, generated_output = self.reinforce_loss(observation=observation)
with torch.no_grad():
reference_log_prob = self.reference_actor.get_logsum_prob(
observation, generated_output["action"]
)
ratio = generated_output["log_prob"] - reference_log_prob
kl_loss = (ratio.detach() + 1.0) * generated_output["log_prob"]
loss = (1 - self.kl_coeff) * reinforce_loss + self.kl_coeff * kl_loss
log = generated_output["log"]
log = {
**log,
"reference_log_prob.mean": reference_log_prob.mean(),
"reference_log_prob.max": reference_log_prob.max(),
"reference_log_prob.min": reference_log_prob.min(),
}
log = {
**log,
"kl_loss.mean": kl_loss.mean(),
"kl_loss.max": kl_loss.max(),
"kl_loss.min": kl_loss.min(),
}
log = {**log, "actor_loss.mean": loss.mean(), "ratio": ratio.mean()}
return loss.mean(), log
def reinforce_loss(self, observation, **kwargs):
### Reinforce Loss
action = self.actor.forward(observation)
log_prob = self.actor.get_logsum_prob(observation, action)
with torch.no_grad():
advantages = self.critic.get_advantages(observation, action)
loss = -advantages.flatten() * log_prob
### Logging
log = self.get_actor_log(
loss=torch.mean(loss.detach()), advantages=advantages, log_prob=log_prob
)
# self.log_dict(log)
return loss, {
"log_prob": log_prob,
"advantages": advantages,
"action": action,
"log": log,
}