File size: 27,621 Bytes
8014d08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
import lightning as L
from lightning.pytorch.utilities import rank_zero_only
import torch
import os
import gc
torch.set_float32_matmul_precision("high")
from SimulateOnEnv import batch_simulate_on_environment
from lightning.pytorch.callbacks import Callback
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from typing import Optional
from peft import LoraConfig, TaskType, get_peft_model, PeftModel
from safetensors import safe_open
from safetensors.torch import save_file
def safe_load(path):
"""安全加载权重,处理大小不匹配"""
result = {}
with safe_open(path, framework="pt") as f:
for key in f.keys():
try:
result[key] = f.get_tensor(key)
except Exception as e:
print(f"Error loading {key}: {str(e)}")
return result
def set_special_tokens(model, tokenizer):
if tokenizer.pad_token is None and tokenizer.pad_token_id is None:
print_rank_0(f"[WARNING] the pad token of the tokenizer is None")
# We do not resize the vocab embedding, since it ruins the KL value with the ref_model
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
# tokenizer.pad_token = tokenizer.decode(0)
model.config.pad_token_id = tokenizer.pad_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
return model, tokenizer
def load_model_and_tokenizer(model_name_or_path, actor_checkpoint=None):
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
use_cache=False,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
if hasattr(model, "ref_model"):
del model.ref_model
lora_config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM,
)
model = get_peft_model(model, lora_config)
if actor_checkpoint is not None:
weight_map = {}
with safe_open(actor_checkpoint, framework="pt") as f:
for key in f.keys():
new_key = key.replace("base_model.model.", "")
weight_map[new_key] = f.get_tensor(key)
# 应用权重
for name, param in model.named_parameters():
for key, tensor in weight_map.items():
if key in name and param.shape == tensor.shape:
param.data.copy_(tensor)
print(f"加载权重: {name} <- {key}")
break
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
padding_side="left", # for batch decode
truncation_side="left",
model_max_length=1024,
trust_remote_code=True,
)
model.gradient_checkpointing_enable()
model, tokenizer = set_special_tokens(model, tokenizer)
return model, tokenizer
class ActorModel(torch.nn.Module):
def __init__(self, get_device, model_name_or_path, actor_checkpoint=None):
super().__init__()
self.get_device = get_device
self.model, self.tokenizer = load_model_and_tokenizer(model_name_or_path, actor_checkpoint)
def forward(self, observation, do_sample=True):
obs_ids = self.tokenizer(
observation,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
).to(self.model.device)
obs_embeds = self.model.get_input_embeddings()(obs_ids["input_ids"])
outputs = self.model.generate(
inputs_embeds=obs_embeds,
attention_mask=obs_ids["attention_mask"],
max_new_tokens=32,
do_sample=do_sample,
pad_token_id=self.tokenizer.eos_token_id,
)
action = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
return action
def behavioral_cloning_loss(self, observation, action, **kwargs):
logsum_probs = self.get_logsum_prob(
observation, action
) # this line has been refactored and not tested
loss = -logsum_probs.mean()
return loss, {"behavioral_cloning/loss": loss.detach()}
def get_logsum_prob(self, observation, action_from_dataloader, **kwargs):
action = [a + self.tokenizer.eos_token for a in action_from_dataloader]
alltext = [obs + a for obs, a in zip(observation, action)]
generated_probabilities = self.to_tokens_and_logprobs(alltext)
assert (
len(generated_probabilities)
== len(alltext)
== len(observation)
== len(action)
)
mask = torch.zeros_like(generated_probabilities.detach(), dtype=torch.bool)
for i, (obs, act, text) in enumerate(zip(observation, action, alltext)):
assert text == obs + act
act_ids = self.tokenizer(act, return_tensors="pt", padding=True)
txt_ids = self.tokenizer(text, return_tensors="pt", padding=True)
n_token_act = len(
act_ids["input_ids"][0]
) # [0] because the batch is one inside the foor loop
n_token_txt = len(txt_ids["input_ids"][0])
mask[i, n_token_txt - n_token_act - 1 : n_token_txt - 1] = (
True # the -1 shift is due to the the generated probabilities being shifted
)
generated_probabilities = torch.where(mask, generated_probabilities, 1.0)
log_probs = torch.where(
mask, torch.log(generated_probabilities), 0.0
) # must be separate from the line above for numerical stability (cannot take log(0.0))
logsum_probs = torch.sum(log_probs, dim=1)
del act_ids, txt_ids, log_probs, generated_probabilities
return logsum_probs
def to_tokens_and_logprobs(self, input_texts):
input_ids = self.tokenizer(
input_texts, padding=True, truncation=True, return_tensors="pt"
).input_ids.to(self.get_device())
outputs = self.model(input_ids)
probs = torch.softmax(outputs.logits, dim=-1)
# collect the probability of the generated token -- probability at index 0 corresponds to the token at index 1
probs = probs[:, :-1, :]
input_ids = input_ids[:, 1:]
gen_probs = torch.gather(probs, 2, input_ids[:, :, None]).squeeze(-1)
del outputs, probs
torch.cuda.empty_cache()
gc.collect()
torch.cuda.memory._set_allocator_settings('max_split_size_mb:32')
return gen_probs
class RobertaCritic(torch.nn.Module):
def __init__(
self,
get_device,
discount_factor: float,
tau: float,
expectile: float,
from_checkpoint=None,
):
super().__init__()
self.get_device = get_device
self.discount_factor = discount_factor
self.tau = tau
self.expectile = expectile
### Define the Critic
from ArcherCritic import ArcherDoubleCritic
self.critic = ArcherDoubleCritic(in_dim=768, out_dim=1)
self.target_critic = ArcherDoubleCritic(in_dim=768, out_dim=1)
self.soft_update_target_critic(1)
if from_checkpoint is not None:
checkpoint = torch.load(from_checkpoint, map_location=torch.device("cpu"))
weights = {
k.removeprefix("critic."): v
for k, v in checkpoint["state_dict"].items()
if k.startswith("critic.")
}
self.load_state_dict(weights)
print(
"I have initialized the critic from the checkpoint: ", from_checkpoint
)
### Miscellaneus Shortcuts
self.softmax = torch.nn.Softmax(dim=-1)
self.td_criterion = torch.nn.MSELoss()
self.expectile_criterion = lambda diff: self.loss_value_diff(
diff=diff, expectile=self.expectile
)
def get_q(self, observation, action, detach_model=False):
return self.critic.get_q(observation, action, detach_model=detach_model)
def get_v(self, inputs, detach_model=False):
return self.critic.get_v(inputs, detach_model=detach_model)
def get_target_v(self, inputs, detach_model=False):
return self.target_critic.get_v(inputs, detach_model=detach_model)
def get_target_q(self, observation, action, detach_model=False):
return self.target_critic.get_q(observation, action, detach_model=detach_model)
def get_advantages(self, observation, action):
q1, q2 = self.get_q(observation, action)
v1, v2 = self.get_v(observation)
q = torch.minimum(q1, q2)
v = torch.minimum(v1, v2)
advantages = q - v
return advantages
def argmax_advantage(self, observation, get_available_actions):
argmax_actions = []
for obs in observation:
available_actions = get_available_actions(obs)
advantages = torch.as_tensor(
[self.get_advantages([obs], [action]) for action in available_actions]
)
action = available_actions[torch.argmax(advantages)]
argmax_actions.append(action)
return argmax_actions
def soft_update_target_critic(self, tau=None):
if tau == None:
tau = self.tau
for target_param, param in zip(
self.target_critic.parameters(), self.critic.parameters()
):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def iql_loss(self, observation, action, reward, next_observation, done, **kwargs):
### Fitting the Q function
q1, q2 = self.get_q(observation, action, detach_model=False)
q1 = q1.flatten()
q2 = q2.flatten()
reward = torch.Tensor(reward) # .to(self.agent.device)
done = torch.Tensor(done) # .to(self.agent.device)
with torch.no_grad():
target_v1, target_v2 = self.get_target_v(next_observation)
target_v1 = (
reward
+ torch.logical_not(done) * target_v1.flatten() * self.discount_factor
)
target_v2 = (
reward
+ torch.logical_not(done) * target_v2.flatten() * self.discount_factor
)
q1_loss = self.td_criterion(q1, target_v1)
q2_loss = self.td_criterion(q2, target_v2)
### Fitting the value function
with torch.no_grad():
target_q1, target_q2 = self.get_target_q(
observation, action, detach_model=False
)
target_q1 = target_q1.flatten()
target_q2 = target_q2.flatten()
v1, v2 = self.get_v(observation, detach_model=False)
v1 = v1.flatten()
v2 = v2.flatten()
v1_loss = self.expectile_criterion(diff=target_q1.detach() - v1)
v2_loss = self.expectile_criterion(diff=target_q2.detach() - v2)
loss = q1_loss + q2_loss + v1_loss + v2_loss
### Log and print what's happening
log = self.get_log(
q1=q1,
q2=q2,
v1=v1,
v2=v2,
q1_loss=q1_loss,
q2_loss=q2_loss,
v1_loss=v1_loss,
v2_loss=v2_loss,
target_q1=target_q1,
target_q2=target_q2,
)
return loss, log
def loss_value_diff(self, diff, expectile):
"""Loss function for iql expectile value difference."""
weight = torch.where(diff > 0, expectile, (1 - expectile))
return (weight * (diff**2)).mean()
def get_log(
self, q1, q2, v1, v2, q1_loss, q2_loss, v1_loss, v2_loss, target_q1, target_q2
):
return {
"critic/q1.loss": q1_loss.detach(),
"critic/q2.loss": q2_loss.detach(),
"critic/v1.loss": v1_loss.detach(),
"critic/v2.loss": v2_loss.detach(),
"critic/q1.mean": torch.mean(q1).detach(),
"critic/q1.min": torch.min(q1).detach(),
"critic/q1.max": torch.max(q1).detach(),
"critic/q2.mean": torch.mean(q2).detach(),
"critic/q2.max": torch.max(q2).detach(),
"critic/q2.min": torch.min(q2).detach(),
"critic/v1.mean": torch.mean(v1).detach(),
"critic/v1.min": torch.min(v1).detach(),
"critic/v1.max": torch.max(v1).detach(),
"critic/v2.mean": torch.mean(v2).detach(),
"critic/v2.max": torch.max(v2).detach(),
"critic/v2.min": torch.min(v2).detach(),
"critic/target_q1.mean": torch.mean(target_q1).detach(),
"critic/target_q1.min": torch.min(target_q1).detach(),
"critic/target_q1.max": torch.max(target_q1).detach(),
"critic/target_q2.mean": torch.mean(target_q2).detach(),
"critic/target_q2.max": torch.max(target_q2).detach(),
"critic/target_q2.min": torch.min(target_q2).detach(),
}
class Agent(L.LightningModule):
def validation_step(self, batch, batch_idx):
# Perform evaluation on environment with stochastic policy
return None
eval_dataset = batch_simulate_on_environment(
policy=lambda obs: self.forward(obs), env=None
)
self.log(
"eval/avg_return", eval_dataset.mean_trajectory_return(), sync_dist=True
)
self.log(
"eval/std_return", eval_dataset.std_trajectory_return(), sync_dist=True
)
# Perform evaluation on environment with deterministic policy
deterministic_eval_dataset = batch_simulate_on_environment(
policy=lambda obs: self.forward(obs, do_sample=False),
env=None,
)
self.log(
"eval/avg_return_deterministic",
deterministic_eval_dataset.mean_trajectory_return(),
sync_dist=True,
)
self.log(
"eval/std_return_deterministic",
deterministic_eval_dataset.std_trajectory_return(),
sync_dist=True,
)
return eval_dataset.mean_trajectory_return()
class BehaviouralCloning(Agent):
def __init__(self, lr: float):
super().__init__() # Initialize LLM base class
self.save_hyperparameters()
### Config
self.lr = lr
### Initialization
self.agent = ActorModel(get_device=lambda: self.device)
def forward(self, observation, **kwargs):
return self.agent.forward(observation, **kwargs)
def training_step(self, batch, batch_idx):
loss, log = self.agent.behavioral_cloning_loss(**batch)
self.log_dict(log, sync_dist=True)
return loss
def configure_optimizers(self):
from torch.optim import Adam
# 收集所有需要优化的参数
optimizer_params = [
{"params": self.actor.model.parameters(), "lr": self.actor_lr},
]
# 如果需要优化critic,添加其参数
if self.optimize_critic:
optimizer_params.append({
"params": self.critic.critic.parameters(),
"lr": self.critic_lr
})
# 创建单个优化器
optimizer = Adam(optimizer_params)
return optimizer
class FilteredBehaviouralCloning(BehaviouralCloning):
def __init__(self, lr: float, filter: float):
super().__init__(lr)
self.filter = filter
def configure_callbacks(self):
return FilterDataset(filter=self.filter)
class FilterDataset(Callback):
def __init__(self, filter: float):
self.filter = filter
def on_fit_start(self, trainer, algorithm):
print("*** Filtering Dataset ***")
dataset = trainer.datamodule.dataset
print("Statistics of Input Dataset")
print("Number of Trajectories:", dataset.nTrajectories())
print("Number of Trajectories:", len(dataset))
dataset.keep_top_fraction_of_trajectories(fraction=self.filter)
trainer.datamodule.dataset = dataset
print("Statistics of Filtered Dataset")
print("Number of Trajectories:", dataset.nTrajectories())
print("Number of Trajectories:", len(dataset))
class ActorCritic(Agent):
def __init__(
self,
model_name_or_path: str,
actor_lr: float,
critic_lr: float,
tau: float,
accumulate_grad_batches: int,
discount_factor: float,
critic_expectile: float,
optimize_critic: bool,
actor_checkpoint=None,
critic_checkpoint=None,
**kwargs
):
super().__init__() # Initialize LLM base class
self.example_input_array = (torch.zeros(1, 1, dtype=torch.long),)
self.save_hyperparameters()
### Config
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.discount_factor = discount_factor
self.tau = tau
### Manual Gradient Accumulation
self.accumulate_grad_batches = accumulate_grad_batches
self.automatic_optimization = False
### Initialization
self.actor = ActorModel(
get_device=lambda: self.device, model_name_or_path=model_name_or_path, actor_checkpoint=actor_checkpoint
)
self.critic = RobertaCritic(
get_device=lambda: self.device,
discount_factor=discount_factor,
tau=tau,
expectile=critic_expectile,
from_checkpoint=critic_checkpoint,
)
self.actor_current_backward_step = 0
self.critic_current_backward_step = 0
self.critic_warmup_gradient_steps = 0
self.optimize_actor = lambda: (
True
if self.critic_current_backward_step // self.accumulate_grad_batches
>= self.critic_warmup_gradient_steps
else False
)
self.optimize_critic = lambda: optimize_critic
def forward(self, observation, **kwargs):
action = self.actor.forward(observation, **kwargs)
return action
def training_step(self, batch, batch_idx):
# if batch_idx == 3:
# return
optimizer = self.optimizers()
mem = torch.cuda.memory_allocated() / torch.cuda.get_device_properties(0).total_memory
if mem > 0.8:
gc.collect()
torch.cuda.empty_cache()
if self.optimize_critic():
# scale losses by 1/N (for N batches of gradient accumulation)
critic_loss, critic_log = self.critic_loss(batch)
critic_loss /= self.accumulate_grad_batches
self.manual_backward(critic_loss)
self.critic_current_backward_step += 1
self.log_dict(critic_log, sync_dist=True)
# accumulate gradients of N batches
if self.critic_current_backward_step % self.accumulate_grad_batches == 0:
optimizer.step()
optimizer.zero_grad()
self.critic.soft_update_target_critic(self.tau)
if self.optimize_actor():
# scale losses by 1/N (for N batches of gradient accumulation)
actor_loss, actor_log = self.actor_loss(batch)
actor_loss /= self.accumulate_grad_batches
self.manual_backward(actor_loss)
self.actor_current_backward_step += 1
self.log_dict(actor_log, sync_dist=True)
# accumulate gradients of N batches
if self.actor_current_backward_step % self.accumulate_grad_batches == 0:
optimizer.step()
optimizer.zero_grad()
def get_actor_log(self, loss, advantages, log_prob):
return {
"actor/loss": loss.detach(),
"actor/advantages.mean": advantages.detach().mean(),
"actor/advantages.max": torch.max(advantages.detach()),
"actor/advantages.min": torch.min(advantages.detach()),
"actor/log_prob.mean": torch.mean(log_prob.detach()),
"actor/log_prob.max": torch.max(log_prob.detach()),
"actor/log_prob.min": torch.min(log_prob.detach()),
}
def configure_optimizers(self):
from torch.optim import Adam
optimizer_params = []
if hasattr(self, 'actor') and hasattr(self.actor, 'parameters'):
optimizer_params.append({
"params": self.actor.parameters(),
"lr": self.actor_lr
})
if self.optimize_critic and hasattr(self, 'critic') and hasattr(self.critic, 'parameters'):
optimizer_params.append({
"params": self.critic.parameters(),
"lr": self.critic_lr
})
if not optimizer_params:
return None
optimizer = Adam(optimizer_params)
return optimizer
class OfflineArcher(ActorCritic):
def __init__(
self,
model_name_or_path: str,
inv_temp: float,
actor_lr: float,
critic_lr: float,
tau: float,
accumulate_grad_batches: int,
discount_factor: float,
critic_expectile: float,
optimize_critic: bool,
actor_checkpoint: Optional[str] = None,
critic_checkpoint: Optional[str] = None,
**kwargs
):
super().__init__(
model_name_or_path=model_name_or_path,
actor_lr=actor_lr,
critic_lr=critic_lr,
tau=tau,
accumulate_grad_batches=accumulate_grad_batches,
discount_factor=discount_factor,
critic_expectile=critic_expectile,
optimize_critic=optimize_critic,
actor_checkpoint=actor_checkpoint,
critic_checkpoint=critic_checkpoint,
**kwargs
)
self.inv_temp = inv_temp
self.actor_loss = lambda batch: self.awr_loss(**batch)
self.critic_loss = lambda batch: self.critic.iql_loss(**batch)
def awr_loss(self, observation, action, **kwargs):
log_prob = self.actor.get_logsum_prob(observation, action)
with torch.no_grad():
advantages = self.critic.get_advantages(observation, action)
advantages = advantages.flatten()
log_prob = log_prob.flatten()
factor = torch.exp(self.inv_temp * advantages)
loss_batch = -factor * log_prob
loss = loss_batch.mean()
# ### Log and print what's happening
log = self.get_actor_log(loss=loss, advantages=advantages, log_prob=log_prob)
log = {
**log,
**{
"actor/factor.mean": factor.detach().mean(),
"actor/factor.max": torch.max(factor.detach()),
"actor/factor.min": torch.min(factor.detach()),
},
}
return loss, log
def configure_optimizers(self):
# 直接调用基类方法
return super().configure_optimizers()
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
"""保存 LoRA 适配器权重"""
super().on_save_checkpoint(checkpoint)
save_dir = self.trainer.default_root_dir
os.makedirs(save_dir, exist_ok=True)
# 保存 LoRA 适配器
if hasattr(self.actor.model, "save_pretrained"):
self.actor.model.save_pretrained(save_dir)
# 保存 tokenizer
if hasattr(self.actor, "tokenizer"):
self.actor.tokenizer.save_pretrained(save_dir)
print(f"✅ LoRA adapter saved to: {save_dir}")
self.merge_and_save_lora(os.path.join(save_dir, "merged_model"))
def merge_and_save_lora(self, save_dir):
"""
Merge the LoRA adapter weights into the base model and save the merged model and tokenizer.
"""
# Only proceed if the actor model has the correct method
try:
# 确保模型在CPU上且处于eval模式
original_device = next(self.actor.model.parameters()).device
self.actor.model.to('cpu')
self.actor.model.eval()
if hasattr(self.actor.model, "merge_and_unload"):
# 执行合并
merged_model = self.actor.model.merge_and_unload()
# 检查合并结果
from peft import PeftModel
if isinstance(merged_model, PeftModel):
print(">>> [Warning] Still a PeftModel after merge. Using base_model.model...")
merged_model = merged_model.base_model.model
# 保存合并后的模型
merged_model.save_pretrained(os.path.join(save_dir, "merged_model"))
print(f"✅ Merged model saved to: {os.path.join(save_dir, 'merged_model')}")
else:
print("❌ merge_and_unload method not found in actor.model. Cannot merge LoRA weights.")
except Exception as e:
print(f"❌ Error merging LoRA weights: {e}")
import traceback
traceback.print_exc()
finally:
# 恢复原始设备
self.actor.model.to(original_device)
class IQLKL(ActorCritic):
def __init__(self, kl_coeff: float, reference_actor_path, **kwargs):
super().__init__(**kwargs)
self.kl_coeff = kl_coeff
self.reference_actor = ActorModel(
get_device=lambda: self.device, from_checkpoint=reference_actor_path
)
self.actor_loss = lambda batch: self.advantage_kl_loss(**batch)
self.critic_loss = lambda batch: self.critic.iql_loss(**batch)
def advantage_kl_loss(self, observation, **kwargs):
reinforce_loss, generated_output = self.reinforce_loss(observation=observation)
with torch.no_grad():
reference_log_prob = self.reference_actor.get_logsum_prob(
observation, generated_output["action"]
)
ratio = generated_output["log_prob"] - reference_log_prob
kl_loss = (ratio.detach() + 1.0) * generated_output["log_prob"]
loss = (1 - self.kl_coeff) * reinforce_loss + self.kl_coeff * kl_loss
log = generated_output["log"]
log = {
**log,
"reference_log_prob.mean": reference_log_prob.mean(),
"reference_log_prob.max": reference_log_prob.max(),
"reference_log_prob.min": reference_log_prob.min(),
}
log = {
**log,
"kl_loss.mean": kl_loss.mean(),
"kl_loss.max": kl_loss.max(),
"kl_loss.min": kl_loss.min(),
}
log = {**log, "actor_loss.mean": loss.mean(), "ratio": ratio.mean()}
return loss.mean(), log
def reinforce_loss(self, observation, **kwargs):
### Reinforce Loss
action = self.actor.forward(observation)
log_prob = self.actor.get_logsum_prob(observation, action)
with torch.no_grad():
advantages = self.critic.get_advantages(observation, action)
loss = -advantages.flatten() * log_prob
### Logging
log = self.get_actor_log(
loss=torch.mean(loss.detach()), advantages=advantages, log_prob=log_prob
)
# self.log_dict(log)
return loss, {
"log_prob": log_prob,
"advantages": advantages,
"action": action,
"log": log,
}
|