Dataset Viewer
Auto-converted to Parquet
subject_id
stringclasses
4 values
file_name
stringlengths
15
15
label
stringclasses
4 values
hand
stringclasses
2 values
P04
P04_segment0147
grasping
left
P01
P01_segment0028
transport_without_block
left
P02
P02_segment0026
grasping
right
P01
P01_segment0032
grasping
left
P04
P04_segment0185
grasping
left
P02
P02_segment0034
grasping
right
P03
P03_segment0031
transport_without_block
left
P03
P03_segment0375
grasping
left
P03
P03_segment0281
grasping
left
P01
P01_segment0151
transport_without_block
left
P01
P01_segment0039
grasping
left
P04
P04_segment0100
grasping
left
P03
P03_segment0146
transport_without_block
left
P02
P02_segment0041
grasping
right
P04
P04_segment0154
grasping
left
P01
P01_segment0299
non_task
left
P03
P03_segment0374
grasping
left
P01
P01_segment0201
transport_with_block
left
P03
P03_segment0220
grasping
left
P01
P01_segment0204
non_task
left
P03
P03_segment0196
non_task
left
P03
P03_segment0153
grasping
left
P03
P03_segment0385
grasping
left
P04
P04_segment0028
grasping
left
P03
P03_segment0148
grasping
left
P03
P03_segment0041
grasping
left
P03
P03_segment0188
grasping
left
P03
P03_segment0283
transport_without_block
left
P01
P01_segment0261
transport_without_block
left
P01
P01_segment0098
non_task
left
P04
P04_segment0035
transport_without_block
left
P02
P02_segment0025
transport_without_block
right
P02
P02_segment0018
grasping
right
P04
P04_segment0153
grasping
left
P03
P03_segment0285
grasping
left
P01
P01_segment0022
transport_without_block
left
P01
P01_segment0247
non_task
left
P04
P04_segment0004
non_task
left
P01
P01_segment0286
grasping
left
P03
P03_segment0060
grasping
left
P04
P04_segment0131
non_task
left
P01
P01_segment0278
grasping
left
P01
P01_segment0291
grasping
left
P01
P01_segment0330
transport_without_block
left
P01
P01_segment0015
non_task
left
P04
P04_segment0102
grasping
left
P03
P03_segment0229
grasping
left
P01
P01_segment0177
transport_with_block
left
P03
P03_segment0075
grasping
left
P03
P03_segment0289
grasping
left
P03
P03_segment0068
transport_without_block
left
P01
P01_segment0229
non_task
left
P03
P03_segment0020
transport_without_block
left
P01
P01_segment0182
grasping
left
P01
P01_segment0043
non_task
left
P04
P04_segment0116
grasping
left
P01
P01_segment0212
non_task
left
P01
P01_segment0066
transport_without_block
left
P03
P03_segment0125
transport_with_block
left
P01
P01_segment0127
grasping
left
P01
P01_segment0111
transport_without_block
left
P03
P03_segment0269
non_task
left
P03
P03_segment0272
transport_without_block
left
P04
P04_segment0064
grasping
left
P03
P03_segment0070
transport_without_block
left
P04
P04_segment0052
transport_without_block
left
P01
P01_segment0159
transport_with_block
left
P03
P03_segment0079
grasping
left
P01
P01_segment0142
transport_with_block
left
P01
P01_segment0012
non_task
left
P01
P01_segment0179
transport_without_block
left
P03
P03_segment0387
grasping
left
P03
P03_segment0042
grasping
left
P04
P04_segment0170
transport_without_block
left
P01
P01_segment0311
grasping
left
P01
P01_segment0080
non_task
left
P01
P01_segment0275
grasping
left
P03
P03_segment0238
transport_without_block
left
P01
P01_segment0030
grasping
left
P01
P01_segment0297
grasping
left
P03
P03_segment0371
transport_without_block
left
P01
P01_segment0016
non_task
left
P01
P01_segment0090
transport_without_block
left
P03
P03_segment0367
grasping
left
P03
P03_segment0172
grasping
left
P01
P01_segment0256
non_task
left
P04
P04_segment0090
grasping
left
P02
P02_segment0011
grasping
right
P01
P01_segment0305
grasping
left
P04
P04_segment0115
grasping
left
P01
P01_segment0102
non_task
left
P01
P01_segment0251
non_task
left
P01
P01_segment0157
grasping
left
P01
P01_segment0272
grasping
left
P01
P01_segment0313
transport_without_block
left
P03
P03_segment0343
non_task
left
P01
P01_segment0298
non_task
left
P03
P03_segment0255
grasping
left
P04
P04_segment0129
non_task
left
P04
P04_segment0249
transport_without_block
left
End of preview. Expand in Data Studio

StrokeVision-Bench: A Multimodal Video and 2D Pose Benchmark for Tracking Stroke Recovery

StrokeVision-Bench is an action recognition dataset of short segments of stroke patients performing the Box-Block Test.

StrokeVision-Bench contains 1,000 annotated videos (1 s @ 30 FPS) categorized into four clinically meaningful action classes (Non-task movement, Grasping, Transport with block, Transport without block), with each sample represented in two modalities: raw video segments and 2D skeletal keypoints. We benchmark several state-of-the-art video and skeleton-based action classification methods to establish performance baselines for this domain and facilitate future research in automated stroke rehabilitation assessment.

Dataset Summary

  • Samples: 1,036 short videos (1 s @ 30 FPS)
  • Modalities: RGB frames, 2D skeleton keypoints
  • Action classes: Non-task movement, Grasping, Transport with block, Transport without block
  • Keypoints: COCO 17-keypoint format
  • Train-Test Split: 827 train segments, 209 test segments

Paper: https://arxiv.org/abs/2509.07994

Dataset Structure

  • videos
    • grasping/
    • non_task/
    • transport_with_block/
    • transport_without_block/
  • keypoints/
    • grasping/
    • non_task/
    • transport_with_block/
    • transport_without_block/
  • annotations/
    • train.csv
    • val.csv

The videos folder contains the raw video segments separated by class. The keypoints folder contains the 2D skeletal keypoints as npy files with shape (30, 17, 2) separated by class.

Each instance in the annotations contains the following features:

  • subject_id: The subject of the instance (P01-P04)
  • file_name: File name of the instance within the videos and keypoints directories, formatted as "{subject_id}_segment{segment_id}"
  • label: Action class (Non-task movement, Grasping, Transport with block, Transport without block)
  • hand: Which hand is being used (left, right)

Example entry: P01,P01_segment0201,transport_with_block,left

You can load the annotations directly with pandas and access files via the dataset's videos and keypoints folders.

License

This dataset is released under the CC BY-NC 4.0 license.

Citation

@inproceedings{strokevisionbench,
  title     = {StrokeVision-Bench: A Multimodal Video and 2D Pose Benchmark for Tracking Stroke Recovery},
  author    = {David Robinson and Animesh Gupta and Rizwan Qureshi and Qiushi Fu and Mubarak Shah},
  booktitle = {Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP)},
  year      = {2025}
}
Downloads last month
556