repo_name
stringlengths 2
55
| dataset
stringclasses 1
value | owner
stringlengths 3
31
| lang
stringclasses 10
values | func_name
stringlengths 1
104
| code
stringlengths 20
96.7k
| docstring
stringlengths 1
4.92k
| url
stringlengths 94
241
| sha
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|
OpenComplex
|
github_2023
|
baaihealth
|
python
|
between_residue_clash_loss
|
def between_residue_clash_loss(
atom23_pred_positions: torch.Tensor,
atom23_atom_exists: torch.Tensor,
atom23_atom_radius: torch.Tensor,
residue_index: torch.Tensor,
overlap_tolerance_soft=1.5,
overlap_tolerance_hard=1.5,
eps=1e-10,
) -> Dict[str, torch.Tensor]:
"""Loss to penalize steric clashes between residues.
This is a loss penalizing any steric clashes due to non bonded atoms in
different peptides coming too close. This loss corresponds to the part with
different residues of
Jumper et al. (2021) Suppl. Sec. 1.9.11, eq 46.
Args:
atom14_pred_positions: Predicted positions of atoms in
global prediction frame
atom14_atom_exists: Mask denoting whether atom at positions exists for given
amino acid type
atom14_atom_radius: Van der Waals radius for each atom.
residue_index: Residue index for given amino acid.
overlap_tolerance_soft: Soft tolerance factor.
overlap_tolerance_hard: Hard tolerance factor.
Returns:
Dict containing:
* 'mean_loss': average clash loss
* 'per_atom_loss_sum': sum of all clash losses per atom, shape (N, 23)
* 'per_atom_clash_mask': mask whether atom clashes with any other atom
shape (N, 23)
"""
fp_type = atom23_pred_positions.dtype
# Create the distance matrix.
# (N, N, 23, 23)
dists = torch.sqrt(
eps
+ torch.sum(
(
atom23_pred_positions[..., :, None, :, None, :]
- atom23_pred_positions[..., None, :, None, :, :]
)
** 2,
dim=-1,
)
)
# Create the mask for valid distances.
# shape (N, N, 23, 23)
dists_mask = (
atom23_atom_exists[..., :, None, :, None]
* atom23_atom_exists[..., None, :, None, :]
).type(fp_type)
# Mask out all the duplicate entries in the lower triangular matrix.
# Also mask out the diagonal (atom-pairs from the same residue) -- these atoms
# are handled separately.
dists_mask = dists_mask * (
residue_index[..., :, None, None, None]
< residue_index[..., None, :, None, None]
)
# Backbone O3'--P bond between subsequent residues is no clash.
o3_one_hot = torch.nn.functional.one_hot(
residue_index.new_tensor(6), num_classes=23
)
o3_one_hot = o3_one_hot.reshape(
*((1,) * len(residue_index.shape[:-1])), *o3_one_hot.shape
)
o3_one_hot = o3_one_hot.type(fp_type)
p_one_hot = torch.nn.functional.one_hot(
residue_index.new_tensor(8), num_classes=23
)
p_one_hot = p_one_hot.reshape(
*((1,) * len(residue_index.shape[:-1])), *p_one_hot.shape
)
p_one_hot = p_one_hot.type(fp_type)
neighbour_mask = (
residue_index[..., :, None, None, None] + 1
) == residue_index[..., None, :, None, None]
o3_p_bonds = (
neighbour_mask
* o3_one_hot[..., None, None, :, None]
* p_one_hot[..., None, None, None, :]
)
dists_mask = dists_mask * (1.0 - o3_p_bonds)
# Compute the lower bound for the allowed distances.
# shape (N, N, 23, 23)
dists_lower_bound = dists_mask * (
atom23_atom_radius[..., :, None, :, None]
+ atom23_atom_radius[..., None, :, None, :]
)
# Compute the error.
# shape (N, N, 23, 23)
dists_to_low_error = dists_mask * torch.nn.functional.relu(
dists_lower_bound - overlap_tolerance_soft - dists
)
# Compute the mean loss.
# shape ()
mean_loss = torch.sum(dists_to_low_error) / (1e-6 + torch.sum(dists_mask))
# Compute the per atom loss sum.
# shape (N, 23)
per_atom_loss_sum = torch.sum(dists_to_low_error, dim=(-4, -2)) + torch.sum(
dists_to_low_error, axis=(-3, -1)
)
# Compute the hard clash mask.
# shape (N, N, 23, 23)
clash_mask = dists_mask * (
dists < (dists_lower_bound - overlap_tolerance_hard)
)
# Compute the per atom clash.
# shape (N, 23)
per_atom_clash_mask = torch.maximum(
torch.amax(clash_mask, axis=(-4, -2)),
torch.amax(clash_mask, axis=(-3, -1)),
)
return {
"mean_loss": mean_loss, # shape ()
"per_atom_loss_sum": per_atom_loss_sum, # shape (N, 23)
"per_atom_clash_mask": per_atom_clash_mask, # shape (N, 23)
}
|
"""Loss to penalize steric clashes between residues.
This is a loss penalizing any steric clashes due to non bonded atoms in
different peptides coming too close. This loss corresponds to the part with
different residues of
Jumper et al. (2021) Suppl. Sec. 1.9.11, eq 46.
Args:
atom14_pred_positions: Predicted positions of atoms in
global prediction frame
atom14_atom_exists: Mask denoting whether atom at positions exists for given
amino acid type
atom14_atom_radius: Van der Waals radius for each atom.
residue_index: Residue index for given amino acid.
overlap_tolerance_soft: Soft tolerance factor.
overlap_tolerance_hard: Hard tolerance factor.
Returns:
Dict containing:
* 'mean_loss': average clash loss
* 'per_atom_loss_sum': sum of all clash losses per atom, shape (N, 23)
* 'per_atom_clash_mask': mask whether atom clashes with any other atom
shape (N, 23)
"""
|
https://github.com/baaihealth/OpenComplex/blob/ce0d5b97b154e992b7abb10403b2ad49f850ea6f/opencomplex/loss/loss_fns_rna.py#L180-L310
|
ce0d5b97b154e992b7abb10403b2ad49f850ea6f
|
opshin
|
github_2023
|
OpShin
|
python
|
apply_parameter
|
def apply_parameter(self, *args: pycardano.Datum):
"""
Returns a new OpShin Contract with the applied parameters
"""
# update the parameters in the blueprint (remove applied parameters)
assert len(self.parameter_types) >= len(
args
), f"Applying too many parameters to contract, allowed amount: {self.parameter_types}, but got {len(args)}"
new_parameter_types = copy.copy(self.parameter_types)
for _ in args:
# TODO validate that the applied parameters are of the correct type
new_parameter_types.pop(0)
new_contract_contract = apply_parameters(self.contract, *args)
new_contract = PlutusContract(
new_contract_contract,
self.datum_type,
self.redeemer_type,
new_parameter_types,
self.purpose,
self.version,
self.title,
self.description,
)
return new_contract
|
"""
Returns a new OpShin Contract with the applied parameters
"""
|
https://github.com/OpShin/opshin/blob/d657a227f02670e6b6eed9cac77c0f8a25d51423/opshin/builder.py#L146-L169
|
d657a227f02670e6b6eed9cac77c0f8a25d51423
|
NeMo-Framework-Launcher
|
github_2023
|
NVIDIA
|
python
|
LM.loglikelihood_rolling
|
@abc.abstractmethod
def loglikelihood_rolling(self, requests):
"""Compute full log-likelihood of a string, with no truncation, for perplexity computation
- We will use the full max context length of the model.
- For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
the max context length.
- IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
which may simply concatenate multiple documents together.
- IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
multiple chunks, the last input will still a full-sized context.
Example:
Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
Prefix: EOT
Max context length: 4
Resulting input/prediction pairs:
INPUT: EOT 0 1 2
PRED: 0 1 2 3
INPUT: 3 4 5 6
PRED: 4 5 6 7
INPUT: 5 6 7 8
PRED: 8 9
Observe that:
1. Each token is predicted exactly once
2. For the last pair, we provide the full context, but only score the last two tokens
:param requests: list
A list of strings
string: str
String for which we are computing per-toke loglikelihood
:return: list
A list of pairs (logprob, isgreedy)
logprob: float
The log probability of `continuation`
isgreedy:
Whether `continuation` would be generated by greedy sampling from `context`
"""
pass
|
"""Compute full log-likelihood of a string, with no truncation, for perplexity computation
- We will use the full max context length of the model.
- For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
the max context length.
- IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
which may simply concatenate multiple documents together.
- IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
multiple chunks, the last input will still a full-sized context.
Example:
Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
Prefix: EOT
Max context length: 4
Resulting input/prediction pairs:
INPUT: EOT 0 1 2
PRED: 0 1 2 3
INPUT: 3 4 5 6
PRED: 4 5 6 7
INPUT: 5 6 7 8
PRED: 8 9
Observe that:
1. Each token is predicted exactly once
2. For the last pair, we provide the full context, but only score the last two tokens
:param requests: list
A list of strings
string: str
String for which we are computing per-toke loglikelihood
:return: list
A list of pairs (logprob, isgreedy)
logprob: float
The log probability of `continuation`
isgreedy:
Whether `continuation` would be generated by greedy sampling from `context`
"""
|
https://github.com/NVIDIA/NeMo-Framework-Launcher/blob/4abd481402adc8a061942c486eda6d71f19de718/launcher_scripts/nemo_launcher/collections/eval_harness/lm_eval/base.py#L64-L104
|
4abd481402adc8a061942c486eda6d71f19de718
|
kaizenflow
|
github_2023
|
causify-ai
|
python
|
Backtest_TestCase._test
|
@abc.abstractmethod
def _test(self, *args: Any, **kwargs: Any) -> None:
"""
Run the entire flow.
"""
|
"""
Run the entire flow.
"""
|
https://github.com/causify-ai/kaizenflow/blob/545f66ef6e6b0e5109602dbf1938ef668c55750d/dataflow/backtest/backtest_test_case.py#L123-L127
|
545f66ef6e6b0e5109602dbf1938ef668c55750d
|
kaizenflow
|
github_2023
|
causify-ai
|
python
|
get_forecast_evaluator
|
def get_forecast_evaluator(
forecast_evaluator_class_name: str, **kwargs: Dict[str, Any]
) -> dtfmabfoev.AbstractForecastEvaluator:
"""
Get the forecast evaluator for the backtest analysis.
:param forecast_evaluator_class_name: name of the ForecastEvaluator
as str, e.g. "ForecastEvaluatorFromPrices",
"ForecastEvaluatorWithOptimizer" :param **kwargs: kwargs for
ctor of the provided ForecastEvaluator class
:return: ForecastEvaluator object
"""
# Choose the class based on the label.
if forecast_evaluator_class_name == "ForecastEvaluatorFromPrices":
forecast_evaluator_class = dtfmfefrpr.ForecastEvaluatorFromPrices
#
elif forecast_evaluator_class_name == "ForecastEvaluatorWithOptimizer":
forecast_evaluator_class = ofevwiop.ForecastEvaluatorWithOptimizer
#
else:
raise ValueError(
f"Unsupported forecast_evaluator_class_name: {forecast_evaluator_class_name}"
)
# Construct the object.
forecast_evaluator = forecast_evaluator_class(**kwargs)
return forecast_evaluator
|
"""
Get the forecast evaluator for the backtest analysis.
:param forecast_evaluator_class_name: name of the ForecastEvaluator
as str, e.g. "ForecastEvaluatorFromPrices",
"ForecastEvaluatorWithOptimizer" :param **kwargs: kwargs for
ctor of the provided ForecastEvaluator class
:return: ForecastEvaluator object
"""
|
https://github.com/causify-ai/kaizenflow/blob/545f66ef6e6b0e5109602dbf1938ef668c55750d/dataflow/model/backtest_notebook_utils.py#L138-L163
|
545f66ef6e6b0e5109602dbf1938ef668c55750d
|
kaizenflow
|
github_2023
|
causify-ai
|
python
|
to_typed_csv
|
def to_typed_csv(df: pd.DataFrame, file_name: str) -> str:
"""
Convert df into CSV and creates a file with the dtypes of columns.
This function creates a file containing the types with the same name
and suffix e.g., `foobar.csv.types`.
"""
# Save the types.
dtypes_filename = file_name + ".types"
hio.create_enclosing_dir(dtypes_filename, incremental=True)
dtypes_dict = str(df.dtypes.apply(lambda x: x.name).to_dict())
# Save the data.
df.to_csv(file_name, index=False)
with open(dtypes_filename, "w") as dtypes_file:
dtypes_file.write(dtypes_dict)
return dtypes_filename
|
"""
Convert df into CSV and creates a file with the dtypes of columns.
This function creates a file containing the types with the same name
and suffix e.g., `foobar.csv.types`.
"""
|
https://github.com/causify-ai/kaizenflow/blob/545f66ef6e6b0e5109602dbf1938ef668c55750d/helpers/hcsv.py#L350-L365
|
545f66ef6e6b0e5109602dbf1938ef668c55750d
|
kaizenflow
|
github_2023
|
causify-ai
|
python
|
purify_from_environment
|
def purify_from_environment(txt: str) -> str:
"""
Replace environment variables with placeholders.
The performed transformations are:
1. Replace the Git path with `$GIT_ROOT`
2. Replace the path of current working dir with `$PWD`
3. Replace the current user name with `$USER_NAME`
"""
# 1) Remove references to Git modules starting from the innermost one.
# Make sure that the path is not followed by a word character.
# E.g., `/app/test.txt` is the correct path, while `/application.py`
# is not a root path even though `/app` is the part of the text.
dir_pattern = r"(?![\w])"
for super_module in [False, True]:
# Replace the git path with `$GIT_ROOT`.
super_module_path = hgit.get_client_root(super_module=super_module)
if super_module_path != "/":
pattern = re.compile(f"{super_module_path}{dir_pattern}")
txt = pattern.sub("$GIT_ROOT", txt)
else:
# If the git path is `/` then we don't need to do anything.
pass
# 2) Replace the path of current working dir with `$PWD`
pwd = os.getcwd()
pattern = re.compile(f"{pwd}{dir_pattern}")
txt = pattern.sub("$PWD", txt)
# 3) Replace the current user name with `$USER_NAME`.
user_name = hsystem.get_user_name()
# Set a regex pattern that finds a user name surrounded by dot, dash or space.
# E.g., `IMAGE=$CK_ECR_BASE_PATH/amp_test:local-$USER_NAME-1.0.0`,
# `--name $USER_NAME.amp_test.app.app`, `run --rm -l user=$USER_NAME`.
pattern = rf"([\s\n\-\.\=]|^)+{user_name}+([.\s/-]|$)"
# Use `\1` and `\2` to preserve specific characters around `$USER_NAME`.
target = r"\1$USER_NAME\2"
txt = re.sub(pattern, target, txt)
_LOG.debug("After %s: txt='\n%s'", hintros.get_function_name(), txt)
return txt
|
"""
Replace environment variables with placeholders.
The performed transformations are:
1. Replace the Git path with `$GIT_ROOT`
2. Replace the path of current working dir with `$PWD`
3. Replace the current user name with `$USER_NAME`
"""
|
https://github.com/causify-ai/kaizenflow/blob/545f66ef6e6b0e5109602dbf1938ef668c55750d/helpers/hunit_test.py#L372-L409
|
545f66ef6e6b0e5109602dbf1938ef668c55750d
|
kaizenflow
|
github_2023
|
causify-ai
|
python
|
_get_docker_compose_cmd
|
def _get_docker_compose_cmd(
base_image: str,
stage: str,
version: str,
cmd: str,
*,
# TODO(gp): make these params mandatory.
extra_env_vars: Optional[List[str]] = None,
extra_docker_compose_files: Optional[List[str]] = None,
extra_docker_run_opts: Optional[List[str]] = None,
service_name: str = "app",
entrypoint: bool = True,
generate_docker_compose_file: bool = True,
as_user: bool = True,
print_docker_config: bool = False,
use_bash: bool = False,
) -> str:
"""
Get `docker-compose` run command.
E.g.,
```
IMAGE=*****..dkr.ecr.us-east-1.amazonaws.com/amp:dev \
docker-compose \
--file /amp/devops/compose/docker-compose.yml \
--env-file devops/env/default.env \
run \
--rm \
--name grisha.cmamp.app.cmamp1.20220317_232120 \
--user $(id -u):$(id -g) \
app \
bash
```
:param cmd: command to run inside Docker container
:param extra_docker_run_opts: additional `docker-compose` run options
:param service_name: service to use to run a command
:param entrypoint: whether to use the `entrypoint` or not
:param generate_docker_compose_file: generate the Docker compose file or not
:param as_user: pass the user / group id or not
:param print_docker_config: print the docker config for debugging purposes
:param use_bash: run command through a shell
"""
hprint.log(
_LOG,
logging.DEBUG,
"cmd extra_docker_run_opts service_name "
"entrypoint as_user print_docker_config use_bash",
)
# - Get the base Docker command.
docker_cmd_ = _get_docker_base_cmd(
base_image,
stage,
version,
service_name,
generate_docker_compose_file,
extra_env_vars,
extra_docker_compose_files,
)
# - Add the `config` command for debugging purposes.
docker_config_cmd: List[str] = docker_cmd_[:]
docker_config_cmd.append(
r"""
config"""
)
# - Add the `run` command.
docker_cmd_.append(
r"""
run \
--rm"""
)
# - Add a name to the container.
container_name = _get_container_name(service_name)
docker_cmd_.append(
rf"""
--name {container_name}"""
)
# - Handle the user.
as_user = _run_docker_as_user(as_user)
if as_user:
docker_cmd_.append(
r"""
--user $(id -u):$(id -g)"""
)
# - Handle the extra docker options.
if extra_docker_run_opts:
hdbg.dassert_isinstance(extra_docker_run_opts, list)
extra_opts = " ".join(extra_docker_run_opts)
docker_cmd_.append(
rf"""
{extra_opts}"""
)
# - Handle entrypoint.
if entrypoint:
docker_cmd_.append(
rf"""
{service_name}"""
)
if cmd:
if use_bash:
cmd = f"bash -c '{cmd}'"
docker_cmd_.append(
rf"""
{cmd}"""
)
else:
# No entrypoint.
docker_cmd_.append(
rf"""
--entrypoint bash \
{service_name}"""
)
# Print the config for debugging purpose.
if print_docker_config:
docker_config_cmd_as_str = hlitauti.to_multi_line_cmd(docker_config_cmd)
_LOG.debug("docker_config_cmd=\n%s", docker_config_cmd_as_str)
_LOG.debug(
"docker_config=\n%s",
hsystem.system_to_string(docker_config_cmd_as_str)[1],
)
# Print the config for debugging purpose.
docker_cmd_: str = hlitauti.to_multi_line_cmd(docker_cmd_)
return docker_cmd_
|
"""
Get `docker-compose` run command.
E.g.,
```
IMAGE=*****..dkr.ecr.us-east-1.amazonaws.com/amp:dev \
docker-compose \
--file /amp/devops/compose/docker-compose.yml \
--env-file devops/env/default.env \
run \
--rm \
--name grisha.cmamp.app.cmamp1.20220317_232120 \
--user $(id -u):$(id -g) \
app \
bash
```
:param cmd: command to run inside Docker container
:param extra_docker_run_opts: additional `docker-compose` run options
:param service_name: service to use to run a command
:param entrypoint: whether to use the `entrypoint` or not
:param generate_docker_compose_file: generate the Docker compose file or not
:param as_user: pass the user / group id or not
:param print_docker_config: print the docker config for debugging purposes
:param use_bash: run command through a shell
"""
|
https://github.com/causify-ai/kaizenflow/blob/545f66ef6e6b0e5109602dbf1938ef668c55750d/helpers/lib_tasks_docker.py#L1133-L1254
|
545f66ef6e6b0e5109602dbf1938ef668c55750d
|
kaizenflow
|
github_2023
|
causify-ai
|
python
|
_apply_trimming
|
def _apply_trimming(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Trim `df` according to ATH, weekends, missing data.
:param df: as in `compute_portfolio()`
:return: `df` trimmed down to:
- required and possibly optional columns
- "active" bars (bars where at least one instrument has an end-of-bar
price)
- first index with both a returns prediction and a volatility
"""
_LOG.debug("df.shape=%s", str(df.shape))
# Restrict to required columns.
cols = [self._price_col, self._volatility_col, self._prediction_col]
df = df[cols]
active_index = cofinanc.infer_active_bars(df[self._price_col])
# Drop rows with no prices (this is an approximate way to handle weekends,
# market holidays, and shortened trading sessions).
df = df.reindex(index=active_index)
_LOG.debug("after active_index: df.shape=%s", df.shape)
# Drop indices with prices that precede any returns prediction or
# volatility computation.
first_valid_prediction_index = df[
self._prediction_col
].first_valid_index()
hdbg.dassert_is_not(first_valid_prediction_index, None)
_LOG.debug(hprint.to_str("first_valid_prediction_index"))
#
first_valid_volatility_index = df[
self._volatility_col
].first_valid_index()
hdbg.dassert_is_not(first_valid_volatility_index, None)
_LOG.debug(hprint.to_str("first_valid_volatility_index"))
#
first_valid_index = max(
first_valid_prediction_index, first_valid_volatility_index
)
df = df.loc[first_valid_index:]
_LOG.debug("df.shape=%s", str(df.shape))
_LOG.debug("trimmed df=\n%s", hpandas.df_to_str(df))
return df
|
"""
Trim `df` according to ATH, weekends, missing data.
:param df: as in `compute_portfolio()`
:return: `df` trimmed down to:
- required and possibly optional columns
- "active" bars (bars where at least one instrument has an end-of-bar
price)
- first index with both a returns prediction and a volatility
"""
|
https://github.com/causify-ai/kaizenflow/blob/545f66ef6e6b0e5109602dbf1938ef668c55750d/optimizer/forecast_evaluator_with_optimizer.py#L285-L325
|
545f66ef6e6b0e5109602dbf1938ef668c55750d
|
kaizenflow
|
github_2023
|
causify-ai
|
python
|
get_github_create_issues_table_query
|
def get_github_create_issues_table_query() -> str:
"""
Get SQL query to create github_issues table.
This table contains the data as it is downloaded.
"""
query = """
CREATE TABLE IF NOT EXISTS github_issues(
id SERIAL PRIMARY KEY,
number NUMERIC,
title VARCHAR(500) NOT NULL,
created_at TIMESTAMP,
updated_at TIMESTAMP,
closed_at TIMESTAMP,
author_association VARCHAR(255),
comments NUMERIC,
body VARCHAR(50000) ,
user_login VARCHAR(255) NOT NULL,
user_id NUMERIC,
Crypto_Name VARCHAR(255) NOT NULL,
Extension VARCHAR(255) NOT NULL
)
"""
return query
|
"""
Get SQL query to create github_issues table.
This table contains the data as it is downloaded.
"""
|
https://github.com/causify-ai/kaizenflow/blob/545f66ef6e6b0e5109602dbf1938ef668c55750d/sorrentum_sandbox/spring2023/ml_projects/SorrIssue21_Team2_Implement_sandbox_for_GitHub_2/db_team2.py#L52-L76
|
545f66ef6e6b0e5109602dbf1938ef668c55750d
|
gyre
|
github_2023
|
stablecabal
|
python
|
sample_dpmpp_2m
|
@torch.no_grad()
def sample_dpmpp_2m(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
warmup_lms=False,
ddim_cutoff=0.0,
):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
}
)
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None and warmup_lms:
r = 1 / 2
s = t + r * h
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
denoised_i = model(x_2, sigma_fn(s) * s_in, **extra_args)
elif sigmas[i + 1] <= ddim_cutoff or old_denoised is None:
denoised_i = denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_i = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_i
old_denoised = denoised
return x
|
"""DPM-Solver++(2M)."""
|
https://github.com/stablecabal/gyre/blob/9cba9781cd458acb8b821f5dc584299cab1ed2f3/gyre/pipeline/schedulers/sample_dpmpp_2m.py#L5-L50
|
9cba9781cd458acb8b821f5dc584299cab1ed2f3
|
BigWorld-Engine-14.4.1
|
github_2023
|
v2v3v4
|
python
|
Select.froms
|
@property
def froms(self):
"""Return the displayed list of FromClause elements."""
return self._get_display_froms()
|
"""Return the displayed list of FromClause elements."""
|
https://github.com/v2v3v4/BigWorld-Engine-14.4.1/blob/4389085c8ce35cff887a4cc18fc47d1133d89ffb/programming/bigworld/build/bw_internal/perf/sqlalchemy/sql/expression.py#L4842-L4846
|
4389085c8ce35cff887a4cc18fc47d1133d89ffb
|
BigWorld-Engine-14.4.1
|
github_2023
|
v2v3v4
|
python
|
Complex.__truediv__
|
@abstractmethod
def __truediv__(self, other):
"""self / other with __future__ division.
Should promote to float when necessary.
"""
raise NotImplementedError
|
"""self / other with __future__ division.
Should promote to float when necessary.
"""
|
https://github.com/v2v3v4/BigWorld-Engine-14.4.1/blob/4389085c8ce35cff887a4cc18fc47d1133d89ffb/programming/bigworld/third_party/python/Lib/numbers.py#L123-L129
|
4389085c8ce35cff887a4cc18fc47d1133d89ffb
|
BigWorld-Engine-14.4.1
|
github_2023
|
v2v3v4
|
python
|
is_namespace
|
def is_namespace(self):
"""Returns true if name binding introduces new namespace.
If the name is used as the target of a function or class
statement, this will be true.
Note that a single name can be bound to multiple objects. If
is_namespace() is true, the name may also be bound to other
objects, like an int or list, that does not introduce a new
namespace.
"""
return bool(self.__namespaces)
|
"""Returns true if name binding introduces new namespace.
If the name is used as the target of a function or class
statement, this will be true.
Note that a single name can be bound to multiple objects. If
is_namespace() is true, the name may also be bound to other
objects, like an int or list, that does not introduce a new
namespace.
"""
|
https://github.com/v2v3v4/BigWorld-Engine-14.4.1/blob/4389085c8ce35cff887a4cc18fc47d1133d89ffb/programming/bigworld/third_party/python/Lib/symtable.py#L207-L218
|
4389085c8ce35cff887a4cc18fc47d1133d89ffb
|
BigWorld-Engine-14.4.1
|
github_2023
|
v2v3v4
|
python
|
create_arc
|
def create_arc(self, *args, **kw):
"""Create arc shaped region with coordinates x1,y1,x2,y2."""
return self._create('arc', args, kw)
|
"""Create arc shaped region with coordinates x1,y1,x2,y2."""
|
https://github.com/v2v3v4/BigWorld-Engine-14.4.1/blob/4389085c8ce35cff887a4cc18fc47d1133d89ffb/programming/bigworld/third_party/python/Lib/lib-tk/Tkinter.py#L2271-L2273
|
4389085c8ce35cff887a4cc18fc47d1133d89ffb
|
BigWorld-Engine-14.4.1
|
github_2023
|
v2v3v4
|
python
|
clearstamp
|
def clearstamp(self, stampid):
"""Delete stamp with given stampid
Argument:
stampid - an integer, must be return value of previous stamp() call.
Example (for a Turtle instance named turtle):
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.clearstamp(astamp)
"""
self._clearstamp(stampid)
self._update()
|
"""Delete stamp with given stampid
Argument:
stampid - an integer, must be return value of previous stamp() call.
Example (for a Turtle instance named turtle):
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.clearstamp(astamp)
"""
|
https://github.com/v2v3v4/BigWorld-Engine-14.4.1/blob/4389085c8ce35cff887a4cc18fc47d1133d89ffb/programming/bigworld/third_party/python/Lib/lib-tk/turtle.py#L2933-L2946
|
4389085c8ce35cff887a4cc18fc47d1133d89ffb
|
BigWorld-Engine-14.4.1
|
github_2023
|
v2v3v4
|
python
|
getEventCategory
|
def getEventCategory(self, record):
"""
Return the event category for the record.
Override this if you want to specify your own categories. This version
returns 0.
"""
return 0
|
"""
Return the event category for the record.
Override this if you want to specify your own categories. This version
returns 0.
"""
|
https://github.com/v2v3v4/BigWorld-Engine-14.4.1/blob/4389085c8ce35cff887a4cc18fc47d1133d89ffb/programming/bigworld/third_party/python/Lib/logging/handlers.py#L994-L1001
|
4389085c8ce35cff887a4cc18fc47d1133d89ffb
|
BigWorld-Engine-14.4.1
|
github_2023
|
v2v3v4
|
python
|
errorCheck
|
def errorCheck(self):
"""Check for an error if necessary.
This only generates code if the variable's mode is ErrorMode.
"""
if self.flags == ErrorMode:
self.type.errorCheck(self.name)
|
"""Check for an error if necessary.
This only generates code if the variable's mode is ErrorMode.
"""
|
https://github.com/v2v3v4/BigWorld-Engine-14.4.1/blob/4389085c8ce35cff887a4cc18fc47d1133d89ffb/programming/bigworld/third_party/python/Tools/bgen/bgen/bgenVariable.py#L91-L97
|
4389085c8ce35cff887a4cc18fc47d1133d89ffb
|
griptape
|
github_2023
|
griptape-ai
|
python
|
get_mime_type
|
def get_mime_type(file_path_or_bytes: str | bytes) -> str:
"""Attempt to determine the MIME type of a file or bytes.
If the input is a file path, we use the built-in `mimetypes` package to guess the MIME type.
If the input is bytes, we use the `filetype` library to determine the MIME type.
If the library cannot determine the MIME type (data missing magic bytes), we use a few heuristics to guess the type.
Args:
file_path_or_bytes: The path to the file or the bytes to check.
Returns: The MIME type of the file or bytes.
"""
if isinstance(file_path_or_bytes, bytes):
filetype_guess = filetype.guess(file_path_or_bytes)
if filetype_guess is None:
if _is_text(file_path_or_bytes):
if _is_json(file_path_or_bytes):
return "application/json"
elif _is_csv(file_path_or_bytes):
return "text/csv"
return "text/plain"
else:
return "application/octet-stream"
else:
return filetype_guess.mime
else:
type_, _ = mimetypes.guess_type(file_path_or_bytes)
if type_ is None:
return "application/octet-stream"
else:
return type_
|
"""Attempt to determine the MIME type of a file or bytes.
If the input is a file path, we use the built-in `mimetypes` package to guess the MIME type.
If the input is bytes, we use the `filetype` library to determine the MIME type.
If the library cannot determine the MIME type (data missing magic bytes), we use a few heuristics to guess the type.
Args:
file_path_or_bytes: The path to the file or the bytes to check.
Returns: The MIME type of the file or bytes.
"""
|
https://github.com/griptape-ai/griptape/blob/f9ac289715eeb24cb15cbb31e8e32c0e9fb00d45/griptape/utils/file_utils.py#L11-L43
|
f9ac289715eeb24cb15cbb31e8e32c0e9fb00d45
|
f2
|
github_2023
|
Johnserf-Seed
|
python
|
fetch_play_list
|
async def fetch_play_list(
self,
secUid: str,
cursor: int,
page_counts: int,
) -> UserPlayListFilter:
"""
用于获取指定用户的作品合集列表
(Used to get video mix list of specified user)
Args:
secUid: str: 用户ID (User ID)
cursor: int: 分页游标 (Page cursor)
page_counts: int: 分页数量 (Page counts)
Return:
playlist: UserPlayListFilter: 作品合集列表 (Video mix list)
"""
logger.debug(_("处理用户:{0} 的作品合集列表").format(secUid))
async with TiktokCrawler(self.kwargs) as crawler:
params = UserPlayList(secUid=secUid, cursor=cursor, count=page_counts)
response = await crawler.fetch_user_play_list(params)
playlist = UserPlayListFilter(response)
if not playlist.hasPlayList:
logger.info(_("用户:{0} 没有作品合集").format(secUid))
return {}
logger.debug(_("当前请求的cursor:{0}").format(cursor))
logger.debug(
_("作品合集ID:{0} 作品合集标题:{1}").format(
playlist.mixId, playlist.mixName
)
)
return playlist
|
"""
用于获取指定用户的作品合集列表
(Used to get video mix list of specified user)
Args:
secUid: str: 用户ID (User ID)
cursor: int: 分页游标 (Page cursor)
page_counts: int: 分页数量 (Page counts)
Return:
playlist: UserPlayListFilter: 作品合集列表 (Video mix list)
"""
|
https://github.com/Johnserf-Seed/f2/blob/c80eeabf0622b34549e3316f4f711c3f01109bc1/f2/apps/tiktok/handler.py#L688-L724
|
c80eeabf0622b34549e3316f4f711c3f01109bc1
|
DSVT
|
github_2023
|
Haiyang-W
|
python
|
bilinear_interpolate_torch
|
def bilinear_interpolate_torch(im, x, y):
"""
Args:
im: (H, W, C) [y, x]
x: (N)
y: (N)
Returns:
"""
x0 = torch.floor(x).long()
x1 = x0 + 1
y0 = torch.floor(y).long()
y1 = y0 + 1
x0 = torch.clamp(x0, 0, im.shape[1] - 1)
x1 = torch.clamp(x1, 0, im.shape[1] - 1)
y0 = torch.clamp(y0, 0, im.shape[0] - 1)
y1 = torch.clamp(y1, 0, im.shape[0] - 1)
Ia = im[y0, x0]
Ib = im[y1, x0]
Ic = im[y0, x1]
Id = im[y1, x1]
wa = (x1.type_as(x) - x) * (y1.type_as(y) - y)
wb = (x1.type_as(x) - x) * (y - y0.type_as(y))
wc = (x - x0.type_as(x)) * (y1.type_as(y) - y)
wd = (x - x0.type_as(x)) * (y - y0.type_as(y))
ans = torch.t((torch.t(Ia) * wa)) + torch.t(torch.t(Ib) * wb) + torch.t(torch.t(Ic) * wc) + torch.t(torch.t(Id) * wd)
return ans
|
"""
Args:
im: (H, W, C) [y, x]
x: (N)
y: (N)
Returns:
"""
|
https://github.com/Haiyang-W/DSVT/blob/8cfc2a6f23eed0b10aabcdc4768c60b184357061/pcdet/models/backbones_3d/pfe/voxel_set_abstraction.py#L11-L42
|
8cfc2a6f23eed0b10aabcdc4768c60b184357061
|
OnePose_Plus_Plus
|
github_2023
|
zju3dv
|
python
|
merge_train_core
|
def merge_train_core(
anno_2d_file,
avg_anno_3d_file,
idxs_file,
img_id,
ann_id,
images,
annotations,
):
""" Merge training annotations of different objects"""
with open(anno_2d_file, "r") as f:
annos_2d = json.load(f)
for anno_2d in annos_2d:
img_id += 1
info = {
"id": img_id,
"img_file": anno_2d["img_file"],
}
images.append(info)
ann_id += 1
anno = {
"image_id": img_id,
"id": ann_id,
"pose_file": anno_2d["pose_file"],
"anno2d_file": anno_2d["anno_file"],
"avg_anno3d_file": avg_anno_3d_file,
"idxs_file": idxs_file,
}
annotations.append(anno)
return img_id, ann_id
|
""" Merge training annotations of different objects"""
|
https://github.com/zju3dv/OnePose_Plus_Plus/blob/fc660efb1f594468642d681e35e4843928f16f3e/merge.py#L13-L46
|
fc660efb1f594468642d681e35e4843928f16f3e
|
RDM-Region-Aware-Diffusion-Model
|
github_2023
|
haha-lisa
|
python
|
get_named_beta_schedule
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
#if schedule_name == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
# scale = 1000 / num_diffusion_timesteps
# beta_start = scale * 0.0001
# beta_end = scale * 0.02
# return np.linspace(
# beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
# )
if schedule_name == "linear":
linear_start = 0.00085
linear_end = 0.012
return np.linspace(linear_start ** 0.5, linear_end ** 0.5, num_diffusion_timesteps, dtype=np.float64) ** 2
elif schedule_name == "cosine":
return betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
else:
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
|
https://github.com/haha-lisa/RDM-Region-Aware-Diffusion-Model/blob/be0c767f05af74021530962218106c9c20cad3f0/guided_diffusion/gaussian_diffusion.py#L20-L49
|
be0c767f05af74021530962218106c9c20cad3f0
|
CFScanner
|
github_2023
|
MortezaBashsiz
|
python
|
CloudflareSolver._parse_proxy
|
@staticmethod
def _parse_proxy(proxy: str) -> Dict[str, str]:
"""
Parse a proxy URL string into a dictionary of proxy parameters for the Playwright browser.
Parameters
----------
proxy : str
Proxy URL string.
Returns
-------
Dict[str, str]
Dictionary of proxy parameters.
"""
if "@" in proxy:
proxy_regex = re.match("(.+)://(.+):(.+)@(.+)", proxy)
server = f"{proxy_regex.group(1)}://{proxy_regex.group(4)}"
proxy_params = {
"server": server,
"username": proxy_regex.group(2),
"password": proxy_regex.group(3),
}
else:
proxy_params = {"server": proxy}
return proxy_params
|
"""
Parse a proxy URL string into a dictionary of proxy parameters for the Playwright browser.
Parameters
----------
proxy : str
Proxy URL string.
Returns
-------
Dict[str, str]
Dictionary of proxy parameters.
"""
|
https://github.com/MortezaBashsiz/CFScanner/blob/bcb96dd437e9cf90350ee5581df613b92380827f/other/gist/cfchallenger.py#L96-L123
|
bcb96dd437e9cf90350ee5581df613b92380827f
|
temporian
|
github_2023
|
google
|
python
|
test_correct_or
|
def test_correct_or(self) -> None:
"""Test correct OR operator."""
expected = event_set(
timestamps=[1, 2, 3, 4],
features={"x": [True, False, True, True]},
same_sampling_as=self.evset_1,
)
assertOperatorResult(self, self.evset_1 | self.evset_2, expected)
|
"""Test correct OR operator."""
|
https://github.com/google/temporian/blob/1e33b75b9fadfaf1c30bc20725cba9753105e4f9/temporian/core/operators/test/test_logical.py#L43-L50
|
1e33b75b9fadfaf1c30bc20725cba9753105e4f9
|
temporian
|
github_2023
|
google
|
python
|
PlotterBackend.finalize_subplot
|
@abstractmethod
def finalize_subplot(
self,
):
"""Finalizes a previously added sub plot."""
raise NotImplementedError
|
"""Finalizes a previously added sub plot."""
|
https://github.com/google/temporian/blob/1e33b75b9fadfaf1c30bc20725cba9753105e4f9/temporian/implementation/numpy/data/plotter_base.py#L77-L83
|
1e33b75b9fadfaf1c30bc20725cba9753105e4f9
|
cloudfoxable
|
github_2023
|
BishopFox
|
python
|
Pack
|
def Pack(self, msg, type_url_prefix='type.googleapis.com/',
deterministic=None):
"""Packs the specified message into current Any message."""
if len(type_url_prefix) < 1 or type_url_prefix[-1] != '/':
self.type_url = '%s/%s' % (type_url_prefix, msg.DESCRIPTOR.full_name)
else:
self.type_url = '%s%s' % (type_url_prefix, msg.DESCRIPTOR.full_name)
self.value = msg.SerializeToString(deterministic=deterministic)
|
"""Packs the specified message into current Any message."""
|
https://github.com/BishopFox/cloudfoxable/blob/b7f028ebf2c9d9489e19736942b99fb07b0d0251/aws/challenges/Variable/data/lambda-src-backup/protobuf/internal/well_known_types.py#L64-L71
|
b7f028ebf2c9d9489e19736942b99fb07b0d0251
|
cloudfoxable
|
github_2023
|
BishopFox
|
python
|
_path_get
|
def _path_get(self, data, path):
"""Return the nested data at the given path.
For instance:
data = {'foo': ['bar', 'baz']}
path = ['foo', 0]
==> 'bar'
"""
# jmespath isn't used here because it would be difficult to actually
# create the jmespath query when taking all of the unknowns of key
# structure into account. Gross though this is, it is simple and not
# very error prone.
d = data
for step in path:
d = d[step]
return d
|
"""Return the nested data at the given path.
For instance:
data = {'foo': ['bar', 'baz']}
path = ['foo', 0]
==> 'bar'
"""
|
https://github.com/BishopFox/cloudfoxable/blob/b7f028ebf2c9d9489e19736942b99fb07b0d0251/aws/challenges/Variable/data/lambda-src/botocore/paginate.py#L143-L158
|
b7f028ebf2c9d9489e19736942b99fb07b0d0251
|
cloudfoxable
|
github_2023
|
BishopFox
|
python
|
create_client
|
def create_client(
self,
service_name,
region_name=None,
api_version=None,
use_ssl=True,
verify=None,
endpoint_url=None,
aws_access_key_id=None,
aws_secret_access_key=None,
aws_session_token=None,
config=None,
):
"""Create a botocore client.
:type service_name: string
:param service_name: The name of the service for which a client will
be created. You can use the ``Session.get_available_services()``
method to get a list of all available service names.
:type region_name: string
:param region_name: The name of the region associated with the client.
A client is associated with a single region.
:type api_version: string
:param api_version: The API version to use. By default, botocore will
use the latest API version when creating a client. You only need
to specify this parameter if you want to use a previous API version
of the client.
:type use_ssl: boolean
:param use_ssl: Whether or not to use SSL. By default, SSL is used.
Note that not all services support non-ssl connections.
:type verify: boolean/string
:param verify: Whether or not to verify SSL certificates.
By default SSL certificates are verified. You can provide the
following values:
* False - do not validate SSL certificates. SSL will still be
used (unless use_ssl is False), but SSL certificates
will not be verified.
* path/to/cert/bundle.pem - A filename of the CA cert bundle to
uses. You can specify this argument if you want to use a
different CA cert bundle than the one used by botocore.
:type endpoint_url: string
:param endpoint_url: The complete URL to use for the constructed
client. Normally, botocore will automatically construct the
appropriate URL to use when communicating with a service. You can
specify a complete URL (including the "http/https" scheme) to
override this behavior. If this value is provided, then
``use_ssl`` is ignored.
:type aws_access_key_id: string
:param aws_access_key_id: The access key to use when creating
the client. This is entirely optional, and if not provided,
the credentials configured for the session will automatically
be used. You only need to provide this argument if you want
to override the credentials used for this specific client.
:type aws_secret_access_key: string
:param aws_secret_access_key: The secret key to use when creating
the client. Same semantics as aws_access_key_id above.
:type aws_session_token: string
:param aws_session_token: The session token to use when creating
the client. Same semantics as aws_access_key_id above.
:type config: botocore.client.Config
:param config: Advanced client configuration options. If a value
is specified in the client config, its value will take precedence
over environment variables and configuration values, but not over
a value passed explicitly to the method. If a default config
object is set on the session, the config object used when creating
the client will be the result of calling ``merge()`` on the
default config with the config provided to this call.
:rtype: botocore.client.BaseClient
:return: A botocore client instance
"""
default_client_config = self.get_default_client_config()
# If a config is provided and a default config is set, then
# use the config resulting from merging the two.
if config is not None and default_client_config is not None:
config = default_client_config.merge(config)
# If a config was not provided then use the default
# client config from the session
elif default_client_config is not None:
config = default_client_config
region_name = self._resolve_region_name(region_name, config)
# Figure out the verify value base on the various
# configuration options.
if verify is None:
verify = self.get_config_variable('ca_bundle')
if api_version is None:
api_version = self.get_config_variable('api_versions').get(
service_name, None
)
loader = self.get_component('data_loader')
event_emitter = self.get_component('event_emitter')
response_parser_factory = self.get_component('response_parser_factory')
if config is not None and config.signature_version is UNSIGNED:
credentials = None
elif (
aws_access_key_id is not None and aws_secret_access_key is not None
):
credentials = botocore.credentials.Credentials(
access_key=aws_access_key_id,
secret_key=aws_secret_access_key,
token=aws_session_token,
)
elif self._missing_cred_vars(aws_access_key_id, aws_secret_access_key):
raise PartialCredentialsError(
provider='explicit',
cred_var=self._missing_cred_vars(
aws_access_key_id, aws_secret_access_key
),
)
else:
credentials = self.get_credentials()
auth_token = self.get_auth_token()
endpoint_resolver = self._get_internal_component('endpoint_resolver')
exceptions_factory = self._get_internal_component('exceptions_factory')
config_store = self.get_component('config_store')
defaults_mode = self._resolve_defaults_mode(config, config_store)
if defaults_mode != 'legacy':
smart_defaults_factory = self._get_internal_component(
'smart_defaults_factory'
)
config_store = copy.deepcopy(config_store)
smart_defaults_factory.merge_smart_defaults(
config_store, defaults_mode, region_name
)
client_creator = botocore.client.ClientCreator(
loader,
endpoint_resolver,
self.user_agent(),
event_emitter,
retryhandler,
translate,
response_parser_factory,
exceptions_factory,
config_store,
)
client = client_creator.create_client(
service_name=service_name,
region_name=region_name,
is_secure=use_ssl,
endpoint_url=endpoint_url,
verify=verify,
credentials=credentials,
scoped_config=self.get_scoped_config(),
client_config=config,
api_version=api_version,
auth_token=auth_token,
)
monitor = self._get_internal_component('monitor')
if monitor is not None:
monitor.register(client.meta.events)
return client
|
"""Create a botocore client.
:type service_name: string
:param service_name: The name of the service for which a client will
be created. You can use the ``Session.get_available_services()``
method to get a list of all available service names.
:type region_name: string
:param region_name: The name of the region associated with the client.
A client is associated with a single region.
:type api_version: string
:param api_version: The API version to use. By default, botocore will
use the latest API version when creating a client. You only need
to specify this parameter if you want to use a previous API version
of the client.
:type use_ssl: boolean
:param use_ssl: Whether or not to use SSL. By default, SSL is used.
Note that not all services support non-ssl connections.
:type verify: boolean/string
:param verify: Whether or not to verify SSL certificates.
By default SSL certificates are verified. You can provide the
following values:
* False - do not validate SSL certificates. SSL will still be
used (unless use_ssl is False), but SSL certificates
will not be verified.
* path/to/cert/bundle.pem - A filename of the CA cert bundle to
uses. You can specify this argument if you want to use a
different CA cert bundle than the one used by botocore.
:type endpoint_url: string
:param endpoint_url: The complete URL to use for the constructed
client. Normally, botocore will automatically construct the
appropriate URL to use when communicating with a service. You can
specify a complete URL (including the "http/https" scheme) to
override this behavior. If this value is provided, then
``use_ssl`` is ignored.
:type aws_access_key_id: string
:param aws_access_key_id: The access key to use when creating
the client. This is entirely optional, and if not provided,
the credentials configured for the session will automatically
be used. You only need to provide this argument if you want
to override the credentials used for this specific client.
:type aws_secret_access_key: string
:param aws_secret_access_key: The secret key to use when creating
the client. Same semantics as aws_access_key_id above.
:type aws_session_token: string
:param aws_session_token: The session token to use when creating
the client. Same semantics as aws_access_key_id above.
:type config: botocore.client.Config
:param config: Advanced client configuration options. If a value
is specified in the client config, its value will take precedence
over environment variables and configuration values, but not over
a value passed explicitly to the method. If a default config
object is set on the session, the config object used when creating
the client will be the result of calling ``merge()`` on the
default config with the config provided to this call.
:rtype: botocore.client.BaseClient
:return: A botocore client instance
"""
|
https://github.com/BishopFox/cloudfoxable/blob/b7f028ebf2c9d9489e19736942b99fb07b0d0251/aws/challenges/Variable/data/lambda-src/botocore/session.py#L826-L991
|
b7f028ebf2c9d9489e19736942b99fb07b0d0251
|
Diffusion-SDF
|
github_2023
|
princeton-computational-imaging
|
python
|
__init__
|
def __init__(self, num_classes, in_channels=3, depth=5,
start_filts=64, up_mode='transpose', same_channels=False,
merge_mode='concat', **kwargs):
"""
Arguments:
in_channels: int, number of channels in the input tensor.
Default is 3 for RGB images.
depth: int, number of MaxPools in the U-Net.
start_filts: int, number of convolutional filters for the
first conv.
up_mode: string, type of upconvolution. Choices: 'transpose'
for transpose convolution or 'upsample' for nearest neighbour
upsampling.
"""
super(UNet, self).__init__()
if up_mode in ('transpose', 'upsample'):
self.up_mode = up_mode
else:
raise ValueError("\"{}\" is not a valid mode for "
"upsampling. Only \"transpose\" and "
"\"upsample\" are allowed.".format(up_mode))
if merge_mode in ('concat', 'add'):
self.merge_mode = merge_mode
else:
raise ValueError("\"{}\" is not a valid mode for"
"merging up and down paths. "
"Only \"concat\" and "
"\"add\" are allowed.".format(up_mode))
# NOTE: up_mode 'upsample' is incompatible with merge_mode 'add'
if self.up_mode == 'upsample' and self.merge_mode == 'add':
raise ValueError("up_mode \"upsample\" is incompatible "
"with merge_mode \"add\" at the moment "
"because it doesn't make sense to use "
"nearest neighbour to reduce "
"depth channels (by half).")
self.num_classes = num_classes
self.in_channels = in_channels
self.start_filts = start_filts
self.depth = depth
self.down_convs = []
self.up_convs = []
# create the encoder pathway and add to a list
for i in range(depth):
ins = self.in_channels if i == 0 else outs
outs = self.start_filts*(2**i) if not same_channels else self.in_channels
pooling = True if i < depth-1 else False
#print("down ins, outs: ", ins, outs) # [latent dim, 32], [32, 64]...[128, 256]
down_conv = DownConv(ins, outs, pooling=pooling)
self.down_convs.append(down_conv)
# create the decoder pathway and add to a list
# - careful! decoding only requires depth-1 blocks
for i in range(depth-1):
ins = outs
outs = ins // 2 if not same_channels else ins
up_conv = UpConv(ins, outs, up_mode=up_mode,
merge_mode=merge_mode)
self.up_convs.append(up_conv)
#print("up ins, outs: ", ins, outs)# [256, 128]...[64, 32]; final 32 to latent is done through self.conv_final
# add the list of modules to current module
self.down_convs = nn.ModuleList(self.down_convs)
self.up_convs = nn.ModuleList(self.up_convs)
self.conv_final = conv1x1(outs, self.num_classes)
self.reset_params()
|
"""
Arguments:
in_channels: int, number of channels in the input tensor.
Default is 3 for RGB images.
depth: int, number of MaxPools in the U-Net.
start_filts: int, number of convolutional filters for the
first conv.
up_mode: string, type of upconvolution. Choices: 'transpose'
for transpose convolution or 'upsample' for nearest neighbour
upsampling.
"""
|
https://github.com/princeton-computational-imaging/Diffusion-SDF/blob/7eb2d6786b8864dc45cd180be8ad5c5b2f8c1f8f/models/archs/encoders/conv_pointnet.py#L389-L462
|
7eb2d6786b8864dc45cd180be8ad5c5b2f8c1f8f
|
UniPC
|
github_2023
|
wl-zhao
|
python
|
marginal_lambda
|
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
return log_mean_coeff - log_std
|
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
|
https://github.com/wl-zhao/UniPC/blob/cf9de85bf2ed68137e6fba5f165f451677b174c4/example/score_sde_pytorch/uni_pc.py#L128-L134
|
cf9de85bf2ed68137e6fba5f165f451677b174c4
|
modulus
|
github_2023
|
NVIDIA
|
python
|
build_fno
|
def build_fno(self, num_fno_modes: List[int]) -> None:
"""construct FNO block.
Parameters
----------
num_fno_modes : List[int]
Number of Fourier modes kept in spectral convolutions
"""
# Build Neural Fourier Operators
self.spconv_layers = nn.ModuleList()
self.conv_layers = nn.ModuleList()
for _ in range(self.num_fno_layers):
self.spconv_layers.append(
layers.SpectralConv3d(
self.fno_width,
self.fno_width,
num_fno_modes[0],
num_fno_modes[1],
num_fno_modes[2],
)
)
self.conv_layers.append(nn.Conv3d(self.fno_width, self.fno_width, 1))
|
"""construct FNO block.
Parameters
----------
num_fno_modes : List[int]
Number of Fourier modes kept in spectral convolutions
"""
|
https://github.com/NVIDIA/modulus/blob/e6d7b02fb19ab9cdb3138de228ca3d6f0c99e7d1/modulus/models/fno/fno.py#L463-L484
|
e6d7b02fb19ab9cdb3138de228ca3d6f0c99e7d1
|
modulus
|
github_2023
|
NVIDIA
|
python
|
is_ignored
|
def is_ignored(path, working_path, ignore_patterns):
"""
Check if the path needs to be ignored
"""
# Get the git root path to stop the search
git_root_path = Path(__file__) / Path(working_path)
git_root_path = git_root_path.resolve()
for pattern in ignore_patterns:
normalized_pattern = pattern.rstrip("/")
# Filter paths that are outside git root
relevant_children = [
part
for part in [path] + list(path.parents)
if git_root_path in part.parents or part == git_root_path
]
# Check the directory itself and each parent directory
for part in relevant_children:
# Match directories (patterns ending with '/')
if pattern.endswith("/") and part.is_dir():
if fnmatch.fnmatch(part.name, normalized_pattern):
return True
# Match files or directories without a trailing '/'
if not pattern.endswith("/") and (
fnmatch.fnmatch(str(part), pattern)
or fnmatch.fnmatch(part.name, normalized_pattern)
):
return True
return False
|
"""
Check if the path needs to be ignored
"""
|
https://github.com/NVIDIA/modulus/blob/e6d7b02fb19ab9cdb3138de228ca3d6f0c99e7d1/test/ci_tests/header_check.py#L42-L74
|
e6d7b02fb19ab9cdb3138de228ca3d6f0c99e7d1
|
modulus
|
github_2023
|
NVIDIA
|
python
|
test_irfft_ort_op
|
@check_ort_version()
@pytest.mark.parametrize("dft_dim", [-1, 1])
def test_irfft_ort_op(
test_data: Tensor, norm: str, dft_dim: int, rtol: float = 1e-5, atol: float = 1e-5
):
"""Test IRFFT onnx runtime operation is consistent with torch irfft"""
x = test_data.transpose(-1, dft_dim)
x = fft.rfft(x, dim=dft_dim, norm=norm)
class CustomIrfft(nn.Module):
def forward(self, y):
return fft.irfft(y, dim=dft_dim, norm=norm)
model = CustomIrfft()
output = model(x)
x0 = torch.view_as_real(x)
onnx_model = export_to_onnx_stream(model, x0)
output_ort = run_onnx_inference(onnx_model, (x0,))
assert len(output_ort) == 1
output_onnx = torch.Tensor(output_ort[0])
assert torch.allclose(output, output_onnx, rtol, atol)
|
"""Test IRFFT onnx runtime operation is consistent with torch irfft"""
|
https://github.com/NVIDIA/modulus/blob/e6d7b02fb19ab9cdb3138de228ca3d6f0c99e7d1/test/deploy/test_onnx_fft.py#L168-L190
|
e6d7b02fb19ab9cdb3138de228ca3d6f0c99e7d1
|
safety-gymnasium
|
github_2023
|
PKU-Alignment
|
python
|
build_sensor_observation_space
|
def build_sensor_observation_space(self) -> gymnasium.spaces.Dict:
"""Build observation space for all sensor types.
Returns:
gymnasium.spaces.Dict: The observation space generated by sensors bound with agent.
"""
obs_space_dict = {}
for sensor in self.sensor_conf.sensors: # Explicitly listed sensors
dim = self.sensor_info.sensor_dim[sensor]
obs_space_dict[sensor] = gymnasium.spaces.Box(-np.inf, np.inf, (dim,), dtype=np.float64)
# Velocities don't have wraparound effects that rotational positions do
# Wraparounds are not kind to neural networks
# Whereas the angle 2*pi is very close to 0, this isn't true in the network
# In theory the network could learn this, but in practice we simplify it
# when the sensors_angle_components switch is enabled.
for sensor in self.sensor_info.hinge_vel_names:
obs_space_dict[sensor] = gymnasium.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float64)
for sensor in self.sensor_info.ballangvel_names:
obs_space_dict[sensor] = gymnasium.spaces.Box(-np.inf, np.inf, (3,), dtype=np.float64)
if self.sensor_info.freejoint_pos_name:
sensor = self.sensor_info.freejoint_pos_name
obs_space_dict[sensor] = gymnasium.spaces.Box(-np.inf, np.inf, (1,), dtype=np.float64)
obs_space_dict[sensor + '1'] = gymnasium.spaces.Box(
-np.inf,
np.inf,
(1,),
dtype=np.float64,
)
if self.sensor_info.freejoint_qvel_name:
sensor = self.sensor_info.freejoint_qvel_name
obs_space_dict[sensor] = gymnasium.spaces.Box(-np.inf, np.inf, (3,), dtype=np.float64)
obs_space_dict[sensor + '1'] = gymnasium.spaces.Box(
-np.inf,
np.inf,
(3,),
dtype=np.float64,
)
# Angular positions have wraparound effects, so output something more friendly
if self.sensor_conf.sensors_angle_components:
# Single joints are turned into sin(x), cos(x) pairs
# These should be easier to learn for neural networks,
# Since for angles, small perturbations in angle give small differences in sin/cos
for sensor in self.sensor_info.hinge_pos_names:
obs_space_dict[sensor] = gymnasium.spaces.Box(
-np.inf,
np.inf,
(2,),
dtype=np.float64,
)
# Quaternions are turned into 3x3 rotation matrices
# Quaternions have a wraparound issue in how they are normalized,
# where the convention is to change the sign so the first element to be positive.
# If the first element is close to 0, this can mean small differences in rotation
# lead to large differences in value as the latter elements change sign.
# This also means that the first element of the quaternion is not expectation zero.
# The SO(3) rotation representation would be a good replacement here,
# since it smoothly varies between values in all directions (the property we want),
# but right now we have very little code to support SO(3) rotations.
# Instead we use a 3x3 rotation matrix, which if normalized, smoothly varies as well.
for sensor in self.sensor_info.ballquat_names:
obs_space_dict[sensor] = gymnasium.spaces.Box(
-np.inf,
np.inf,
(3, 3),
dtype=np.float64,
)
else:
# Otherwise include the sensor without any processing
for sensor in self.sensor_info.hinge_pos_names:
obs_space_dict[sensor] = gymnasium.spaces.Box(
-np.inf,
np.inf,
(1,),
dtype=np.float64,
)
for sensor in self.sensor_info.ballquat_names:
obs_space_dict[sensor] = gymnasium.spaces.Box(
-np.inf,
np.inf,
(4,),
dtype=np.float64,
)
return obs_space_dict
|
"""Build observation space for all sensor types.
Returns:
gymnasium.spaces.Dict: The observation space generated by sensors bound with agent.
"""
|
https://github.com/PKU-Alignment/safety-gymnasium/blob/3b117c1ee896b62cd47a527d201d1117fd36ef3d/safety_gymnasium/tasks/safe_multi_agent/bases/base_agent.py#L345-L429
|
3b117c1ee896b62cd47a527d201d1117fd36ef3d
|
DDPM-IP
|
github_2023
|
forever208
|
python
|
update_ema
|
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
|
https://github.com/forever208/DDPM-IP/blob/1f767192e8b60e1694c670672d5adfd8b42256f5/guided_diffusion/nn.py#L55-L65
|
1f767192e8b60e1694c670672d5adfd8b42256f5
|
ControlNet
|
github_2023
|
lllyasviel
|
python
|
forward
|
def forward(self, query_feats, key_feats):
"""Forward function."""
context = super(ObjectAttentionBlock,
self).forward(query_feats, key_feats)
output = self.bottleneck(torch.cat([context, query_feats], dim=1))
if self.query_downsample is not None:
output = resize(query_feats)
return output
|
"""Forward function."""
|
https://github.com/lllyasviel/ControlNet/blob/ed85cd1e25a5ed592f7d8178495b4483de0331bf/annotator/uniformer/mmseg/models/decode_heads/ocr_head.py#L73-L81
|
ed85cd1e25a5ed592f7d8178495b4483de0331bf
|
llama-hub
|
github_2023
|
run-llama
|
python
|
load_data
|
def load_data(
self,
state: Optional[IssueState] = IssueState.OPEN,
labelFilters: Optional[List[Tuple[str, FilterType]]] = None,
) -> List[Document]:
"""
Load issues from a repository and converts them to documents.
Each issue is converted to a document by doing the following:
- The text of the document is the concatenation of the title and the body of the issue.
- The title of the document is the title of the issue.
- The doc_id of the document is the issue number.
- The extra_info of the document is a dictionary with the following keys:
- state: State of the issue.
- created_at: Date when the issue was created.
- closed_at: Date when the issue was closed. Only present if the issue is closed.
- url: URL of the issue.
- assignee: Login of the user assigned to the issue. Only present if the issue is assigned.
- The embedding of the document is None.
- The doc_hash of the document is None.
Args:
- state (IssueState): State of the issues to retrieve. Default is IssueState.OPEN.
- labelFilters: an optional list of filters to apply to the issue list based on labels.
:return: list of documents
"""
documents = []
page = 1
# Loop until there are no more issues
while True:
issues: Dict = self._loop.run_until_complete(
self._github_client.get_issues(
self._owner, self._repo, state=state.value, page=page
)
)
if len(issues) == 0:
print_if_verbose(self._verbose, "No more issues found, stopping")
break
print_if_verbose(
self._verbose, f"Found {len(issues)} issues in the repo page {page}"
)
page += 1
filterCount = 0
for issue in issues:
if not self._must_include(labelFilters, issue):
filterCount += 1
continue
title = issue["title"]
body = issue["body"]
document = Document(
doc_id=str(issue["number"]),
text=f"{title}\n{body}",
)
extra_info = {
"state": issue["state"],
"created_at": issue["created_at"],
# url is the API URL
"url": issue["url"],
# source is the HTML URL, more conveninent for humans
"source": issue["html_url"],
}
if issue["closed_at"] is not None:
extra_info["closed_at"] = issue["closed_at"]
if issue["assignee"] is not None:
extra_info["assignee"] = issue["assignee"]["login"]
if issue["labels"] is not None:
extra_info["labels"] = [label["name"] for label in issue["labels"]]
document.extra_info = extra_info
documents.append(document)
print_if_verbose(self._verbose, f"Resulted in {len(documents)} documents")
if labelFilters is not None:
print_if_verbose(self._verbose, f"Filtered out {filterCount} issues")
return documents
|
"""
Load issues from a repository and converts them to documents.
Each issue is converted to a document by doing the following:
- The text of the document is the concatenation of the title and the body of the issue.
- The title of the document is the title of the issue.
- The doc_id of the document is the issue number.
- The extra_info of the document is a dictionary with the following keys:
- state: State of the issue.
- created_at: Date when the issue was created.
- closed_at: Date when the issue was closed. Only present if the issue is closed.
- url: URL of the issue.
- assignee: Login of the user assigned to the issue. Only present if the issue is assigned.
- The embedding of the document is None.
- The doc_hash of the document is None.
Args:
- state (IssueState): State of the issues to retrieve. Default is IssueState.OPEN.
- labelFilters: an optional list of filters to apply to the issue list based on labels.
:return: list of documents
"""
|
https://github.com/run-llama/llama-hub/blob/b476d3bd2c963cad9dfe2944de7d6ce408aac65a/llama_hub/github_repo_issues/base.py#L118-L196
|
b476d3bd2c963cad9dfe2944de7d6ce408aac65a
|
llama-hub
|
github_2023
|
run-llama
|
python
|
read_page
|
def read_page(self, page_id: str) -> str:
"""Read a page."""
return self._read_block(page_id)
|
"""Read a page."""
|
https://github.com/run-llama/llama-hub/blob/b476d3bd2c963cad9dfe2944de7d6ce408aac65a/llama_hub/notion/base.py#L89-L91
|
b476d3bd2c963cad9dfe2944de7d6ce408aac65a
|
llama-hub
|
github_2023
|
run-llama
|
python
|
is_risk_title
|
def is_risk_title(title: str, filing_type: Optional[str]) -> bool:
"""Checks to see if the title matches the pattern for the risk heading."""
if filing_type in REPORT_TYPES:
return is_10k_risk_title(clean_sec_text(title, lowercase=True))
elif filing_type in S1_TYPES:
return is_s1_risk_title(clean_sec_text(title, lowercase=True))
return False
|
"""Checks to see if the title matches the pattern for the risk heading."""
|
https://github.com/run-llama/llama-hub/blob/b476d3bd2c963cad9dfe2944de7d6ce408aac65a/llama_hub/sec_filings/prepline_sec_filings/sec_document.py#L359-L365
|
b476d3bd2c963cad9dfe2944de7d6ce408aac65a
|
MS-AMP
|
github_2023
|
Azure
|
python
|
_configure_optimizer
|
def _configure_optimizer(self, client_optimizer, model_parameters):
"""Config basic optimizer and optimizer.
Args:
client_optimizer (torch.optim.Optimizer or callable): client optimizer.
model_parameters (list): list of model parameters.
"""
if client_optimizer is not None:
if isinstance(client_optimizer, tuple(self._supported_optims())):
client_optimizer.param_groups[:] = [
pg for pg in client_optimizer.param_groups if len(pg['params']) != 0
]
log_dist("Removing param_group that has no 'params' in the client Optimizer", ranks=[0])
basic_optimizer = client_optimizer
log_dist('Using client Optimizer as basic optimizer', ranks=[0])
else:
basic_optimizer = client_optimizer(model_parameters)
log_dist('Using client callable to create basic optimizer', ranks=[0])
else:
basic_optimizer = self._configure_basic_optimizer(model_parameters)
log_dist(f'Using DeepSpeed Optimizer param name {self.optimizer_name()} as basic optimizer', ranks=[0])
if self.msamp_enabled():
optlevel = self.msamp_optlevel()
if optlevel == 'O3':
# O3 is for ZeRO and need to cast to O2 for MS-AMP.
optlevel = 'O2'
use_te = self.msamp_use_te()
model, basic_optimizer = msamp_initialize(self.module, basic_optimizer, optlevel, use_te)
self._set_client_model(model)
# We need to reset param names after msamp initialize.
self.param_names = {param: name for name, param in model.named_parameters()}
self._check_for_duplicates(basic_optimizer)
self.basic_optimizer = basic_optimizer
log_dist('DeepSpeed Basic Optimizer = {}'.format(basic_optimizer.__class__.__name__), ranks=[0])
optimizer_wrapper = self._do_optimizer_sanity_check(basic_optimizer)
if optimizer_wrapper == ZERO_OPTIMIZATION:
self.optimizer = self._configure_zero_optimizer(basic_optimizer)
elif optimizer_wrapper == FP8:
self.optimizer = self._configure_fp8_optimizer(basic_optimizer, optimizer_wrapper)
elif optimizer_wrapper == AMP:
amp_params = self.amp_params()
log_dist(f'Initializing AMP with these params: {amp_params}', ranks=[0])
model, self.optimizer = amp.initialize(self.module, basic_optimizer, **amp_params)
self._set_client_model(model)
self._broadcast_model()
# TODO: maybe need to broadcast experts differently?
elif optimizer_wrapper == FP16:
self.optimizer = self._configure_fp16_optimizer(basic_optimizer)
elif optimizer_wrapper == BFLOAT16:
self.optimizer = self._configure_bf16_optimizer(basic_optimizer)
else:
self.optimizer = basic_optimizer
log_dist('DeepSpeed Final Optimizer = {}'.format(self.optimizer_name()), ranks=[0])
self.compression_scheduler = self._configure_compression_scheduler()
self.quantizer = self._configure_quantization()
|
"""Config basic optimizer and optimizer.
Args:
client_optimizer (torch.optim.Optimizer or callable): client optimizer.
model_parameters (list): list of model parameters.
"""
|
https://github.com/Azure/MS-AMP/blob/8de09e00c45ce1ce44dcd0ccf1d4e6e4f4ca04fa/msamp/deepspeed/runtime/engine.py#L63-L124
|
8de09e00c45ce1ce44dcd0ccf1d4e6e4f4ca04fa
|
MS-AMP
|
github_2023
|
Azure
|
python
|
__getattr__
|
def __getattr__(self, name):
"""Get attribute by name.
Args:
name (str): Attribute name.
Returns:
Attribute value.
"""
return self.__dict__.get(name, getattr(self.__dict__['ctx'], name))
|
"""Get attribute by name.
Args:
name (str): Attribute name.
Returns:
Attribute value.
"""
|
https://github.com/Azure/MS-AMP/blob/8de09e00c45ce1ce44dcd0ccf1d4e6e4f4ca04fa/msamp/te/modules.py#L156-L165
|
8de09e00c45ce1ce44dcd0ccf1d4e6e4f4ca04fa
|
optimum-neuron
|
github_2023
|
huggingface
|
python
|
load_safetensors
|
def load_safetensors(self, state_dict_dir):
"""
Lazily load the safetensors by associating each weight with the filename.
"""
filename = os.path.join(state_dict_dir, _SAFETENSORS_MODEL_FILENAME)
with safe_open(filename, framework="pt") as f:
keys = f.keys()
key_to_filename = dict(zip(keys, [_SAFETENSORS_MODEL_FILENAME] * len(keys)))
self._load_from_state_dict_dir(state_dict_dir, key_to_filename)
|
"""
Lazily load the safetensors by associating each weight with the filename.
"""
|
https://github.com/huggingface/optimum-neuron/blob/558379f8a1f7f67820ea219323f9af434a6ae2ba/optimum/neuron/backends/hlo/module.py#L174-L182
|
558379f8a1f7f67820ea219323f9af434a6ae2ba
|
manta
|
github_2023
|
fischermoseley
|
python
|
export_csv
|
def export_csv(self, path):
"""
Export the capture to a CSV file.
Args:
path (str): Path to the destination file.
Returns:
None
"""
names = [p.name for p in self._probes]
values = [self.get_trace(n) for n in names]
# Transpose list of lists so that data flows top-to-bottom instead of
# left-to-right
values_transpose = [list(x) for x in zip(*values)]
import csv
with open(path, "w") as f:
writer = csv.writer(f)
writer.writerow(names)
writer.writerows(values_transpose)
|
"""
Export the capture to a CSV file.
Args:
path (str): Path to the destination file.
Returns:
None
"""
|
https://github.com/fischermoseley/manta/blob/e11d9a8315a7a1c91ab5087955d575fc149da06c/src/manta/logic_analyzer/capture.py#L69-L93
|
e11d9a8315a7a1c91ab5087955d575fc149da06c
|
vllm
|
github_2023
|
vllm-project
|
python
|
test_k_equals_zero
|
@pytest.mark.parametrize('k', [0])
@pytest.mark.parametrize('batch_size', [1, 2, 32])
@pytest.mark.parametrize("acceptance_sampler_method",
["rejection_sampler", "typical_acceptance_sampler"])
@torch.inference_mode()
def test_k_equals_zero(k: int, batch_size: int,
acceptance_sampler_method: str):
"""Verify that the SpecDecodeWorker calls the draft and target workers
when k is zero. This happens during prefill.
"""
draft_worker = mock_worker(cls=MultiStepWorker)
target_worker = mock_worker()
metrics_collector = MagicMock(spec=AsyncMetricsCollector)
sampler_output = MagicMock(spec=SamplerOutput)
sampler_output.hidden_states = None
target_worker.execute_model.return_value = [sampler_output]
draft_worker.device = 'cuda'
target_worker.device = 'cuda'
set_random_seed(1)
worker = SpecDecodeWorker(
proposer_worker=draft_worker,
scorer_worker=target_worker,
spec_decode_sampler=mock_spec_decode_sampler(
acceptance_sampler_method),
disable_logprobs=False,
metrics_collector=metrics_collector,
)
seq_group_metadata_list, _, _ = create_batch(batch_size,
k,
prev_output_token_len=0)
execute_model_req = ExecuteModelRequest(
seq_group_metadata_list=seq_group_metadata_list, num_lookahead_slots=k)
out = worker.execute_model(execute_model_req=execute_model_req)
assert len(out) == 1, f"expected only one token output when {k=}"
assert out[0].sampled_token_probs is None, (
"expect gpu tensor references to be None")
assert out[
0].sampled_token_ids is None, "expect gpu tensor references to be None"
draft_worker.execute_model.assert_called_once_with(execute_model_req)
target_worker.execute_model.assert_called_once_with(execute_model_req)
|
"""Verify that the SpecDecodeWorker calls the draft and target workers
when k is zero. This happens during prefill.
"""
|
https://github.com/vllm-project/vllm/blob/c9e2d644e728e8e93ef2871276ed7a6b39c1d0eb/tests/spec_decode/test_spec_decode_worker.py#L474-L521
|
c9e2d644e728e8e93ef2871276ed7a6b39c1d0eb
|
python_motion_planning
|
github_2023
|
ai-winter
|
python
|
mod2pi
|
def mod2pi(self, theta: float) -> float:
"""
Perform modulus operation on 2π.
"""
return theta - 2.0 * math.pi * math.floor(theta / math.pi / 2.0)
|
"""
Perform modulus operation on 2π.
"""
|
https://github.com/ai-winter/python_motion_planning/blob/dc5f45c42488383a488ace21495e70e8129a2b55/python_motion_planning/curve_generation/curve.py#L51-L55
|
dc5f45c42488383a488ace21495e70e8129a2b55
|
devine
|
github_2023
|
devine-dl
|
python
|
clear
|
@env.group(name="clear", short_help="Clear an environment directory.", context_settings=context_settings)
def clear() -> None:
"""Clear an environment directory."""
|
"""Clear an environment directory."""
|
https://github.com/devine-dl/devine/blob/09eda168824157851e30003b196f4851298ec3ac/devine/commands/env.py#L66-L68
|
09eda168824157851e30003b196f4851298ec3ac
|
REAL-Video-Enhancer
|
github_2023
|
TNTwise
|
python
|
checkForNCNN
|
def checkForNCNN() -> bool:
"""
function that checks if the pytorch backend is available
"""
try:
from rife_ncnn_vulkan_python import Rife
import ncnn
try:
from upscale_ncnn_py import UPSCALE
except Exception:
printAndLog(
"Warning: Cannot import upscale_ncnn, falling back to default ncnn processing. (Please install vcredlist on your computer to fix this!)"
)
return True
except ImportError as e:
log(str(e))
return False
except Exception as e:
log(str(e))
|
"""
function that checks if the pytorch backend is available
"""
|
https://github.com/TNTwise/REAL-Video-Enhancer/blob/46bda804944d050db1413ea2493b15a295e13441/backend/src/utils/Util.py#L270-L289
|
46bda804944d050db1413ea2493b15a295e13441
|
se3_diffusion
|
github_2023
|
jasonkyuyim
|
python
|
_to_a3m
|
def _to_a3m(sequences: Sequence[str]) -> str:
"""Converts sequences to an a3m file."""
names = ["sequence %d" % i for i in range(1, len(sequences) + 1)]
a3m = []
for sequence, name in zip(sequences, names):
a3m.append(u">" + name + u"\n")
a3m.append(sequence + u"\n")
return "".join(a3m)
|
"""Converts sequences to an a3m file."""
|
https://github.com/jasonkyuyim/se3_diffusion/blob/53359d71cfabc819ffaa571abd2cef736c871a5d/openfold/data/tools/kalign.py#L26-L33
|
53359d71cfabc819ffaa571abd2cef736c871a5d
|
home-assistant-petkit
|
github_2023
|
RobertD502
|
python
|
async_turn_on
|
async def async_turn_on(self, **kwargs) -> None:
"""Turn light on."""
if not self.coordinator.client.use_ble_relay:
raise HomeAssistantError(f'A PetKit BLE relay is required to control {self.wf_data.data["name"]}')
if not self.wf_data.group_relay:
raise HomeAssistantError(
f'A PetKit BLE relay is required to control {self.wf_data.data["name"]}. '
f'PetKit did not return a valid relay device. If you do have a relay device, '
f'it may temporarily be offline.'
)
try:
await self.coordinator.client.control_water_fountain(self.wf_data, W5Command.LIGHT_ON)
except BluetoothError:
raise PetKitBluetoothError(f'Bluetooth connection to {self.wf_data.data["name"]} failed. Please try turning on the light again.')
else:
self.wf_data.data['settings']['lampRingSwitch'] = 1
self.async_write_ha_state()
await asyncio.sleep(1)
await self.coordinator.async_request_refresh()
|
"""Turn light on."""
|
https://github.com/RobertD502/home-assistant-petkit/blob/a7e5d617678bca56466e3571f72f60dce4aa98bd/custom_components/petkit/switch.py#L171-L191
|
a7e5d617678bca56466e3571f72f60dce4aa98bd
|
home-assistant-petkit
|
github_2023
|
RobertD502
|
python
|
ManualFeed.native_value
|
@property
def native_value(self) -> str:
"""Always reset to 0,0"""
return "0,0"
|
"""Always reset to 0,0"""
|
https://github.com/RobertD502/home-assistant-petkit/blob/a7e5d617678bca56466e3571f72f60dce4aa98bd/custom_components/petkit/text.py#L114-L118
|
a7e5d617678bca56466e3571f72f60dce4aa98bd
|
Online-HD-Map-Construction-CVPR2023
|
github_2023
|
Tsinghua-MARS-Lab
|
python
|
_init_branch
|
def _init_branch(self,):
"""Initialize classification branch and regression branch of head."""
fc_cls = Linear(self.embed_dims*self.bbox_size, self.cls_out_channels)
# fc_cls = Linear(self.embed_dims, self.cls_out_channels)
reg_branch = []
for _ in range(self.num_reg_fcs):
reg_branch.append(Linear(self.embed_dims, self.embed_dims))
reg_branch.append(nn.LayerNorm(self.embed_dims))
reg_branch.append(nn.ReLU())
if self.discrete_output:
reg_branch.append(nn.Linear(
self.embed_dims, max(self.canvas_size), bias=True,))
else:
reg_branch.append(nn.Linear(
self.embed_dims, self.coord_dim, bias=True,))
reg_branch = nn.Sequential(*reg_branch)
# add sigmoid or not
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
num_pred = self.transformer.decoder.num_layers
if self.iterative:
fc_cls = _get_clones(fc_cls, num_pred)
reg_branch = _get_clones(reg_branch, num_pred)
else:
reg_branch = nn.ModuleList(
[reg_branch for _ in range(num_pred)])
fc_cls = nn.ModuleList(
[fc_cls for _ in range(num_pred)])
self.pre_branches = nn.ModuleDict([
('cls', fc_cls),
('reg', reg_branch), ])
|
"""Initialize classification branch and regression branch of head."""
|
https://github.com/Tsinghua-MARS-Lab/Online-HD-Map-Construction-CVPR2023/blob/775b203aeab56be4248fb5495be452fa404bd29d/src/models/heads/map_element_detector.py#L124-L162
|
775b203aeab56be4248fb5495be452fa404bd29d
|
YOWOv2
|
github_2023
|
yjh0410
|
python
|
_remove_invalid_boxes
|
def _remove_invalid_boxes(
self,
detected_boxes,
detected_scores,
detected_class_labels,
detected_masks=None,
):
"""Removes entries with invalid boxes.
A box is invalid if either its xmax is smaller than its xmin, or its ymax
is smaller than its ymin.
Args:
detected_boxes: A float numpy array of size [num_boxes, 4] containing box
coordinates in [ymin, xmin, ymax, xmax] format.
detected_scores: A float numpy array of size [num_boxes].
detected_class_labels: A int32 numpy array of size [num_boxes].
detected_masks: A uint8 numpy array of size [num_boxes, height, width].
Returns:
valid_detected_boxes: A float numpy array of size [num_valid_boxes, 4]
containing box coordinates in [ymin, xmin, ymax, xmax] format.
valid_detected_scores: A float numpy array of size [num_valid_boxes].
valid_detected_class_labels: A int32 numpy array of size
[num_valid_boxes].
valid_detected_masks: A uint8 numpy array of size
[num_valid_boxes, height, width].
"""
valid_indices = np.logical_and(
detected_boxes[:, 0] < detected_boxes[:, 2],
detected_boxes[:, 1] < detected_boxes[:, 3],
)
detected_boxes = detected_boxes[valid_indices]
detected_scores = detected_scores[valid_indices]
detected_class_labels = detected_class_labels[valid_indices]
if detected_masks is not None:
detected_masks = detected_masks[valid_indices]
return [
detected_boxes,
detected_scores,
detected_class_labels,
detected_masks,
]
|
"""Removes entries with invalid boxes.
A box is invalid if either its xmax is smaller than its xmin, or its ymax
is smaller than its ymin.
Args:
detected_boxes: A float numpy array of size [num_boxes, 4] containing box
coordinates in [ymin, xmin, ymax, xmax] format.
detected_scores: A float numpy array of size [num_boxes].
detected_class_labels: A int32 numpy array of size [num_boxes].
detected_masks: A uint8 numpy array of size [num_boxes, height, width].
Returns:
valid_detected_boxes: A float numpy array of size [num_valid_boxes, 4]
containing box coordinates in [ymin, xmin, ymax, xmax] format.
valid_detected_scores: A float numpy array of size [num_valid_boxes].
valid_detected_class_labels: A int32 numpy array of size
[num_valid_boxes].
valid_detected_masks: A uint8 numpy array of size
[num_valid_boxes, height, width].
"""
|
https://github.com/yjh0410/YOWOv2/blob/9e8d23c11ad26ef5e6cfc01e3f4f1112dee634bf/evaluator/ava_evaluation/per_image_evaluation.py#L411-L453
|
9e8d23c11ad26ef5e6cfc01e3f4f1112dee634bf
|
grove
|
github_2023
|
hashicorp-forge
|
python
|
finalize
|
def finalize(self):
"""Performs a final set of operations after logs have been saved."""
return
|
"""Performs a final set of operations after logs have been saved."""
|
https://github.com/hashicorp-forge/grove/blob/a2b4bea0e15ef1a2a80bf092f4a7cb835901ecbd/grove/processors/__init__.py#L54-L57
|
a2b4bea0e15ef1a2a80bf092f4a7cb835901ecbd
|
CEDNet
|
github_2023
|
zhanggang001
|
python
|
center_of_mass
|
def center_of_mass(mask, esp=1e-6):
"""Calculate the centroid coordinates of the mask.
Args:
mask (Tensor): The mask to be calculated, shape (h, w).
esp (float): Avoid dividing by zero. Default: 1e-6.
Returns:
tuple[Tensor]: the coordinates of the center point of the mask.
- center_h (Tensor): the center point of the height.
- center_w (Tensor): the center point of the width.
"""
h, w = mask.shape
grid_h = torch.arange(h, device=mask.device)[:, None]
grid_w = torch.arange(w, device=mask.device)
normalizer = mask.sum().float().clamp(min=esp)
center_h = (mask * grid_h).sum() / normalizer
center_w = (mask * grid_w).sum() / normalizer
return center_h, center_w
|
"""Calculate the centroid coordinates of the mask.
Args:
mask (Tensor): The mask to be calculated, shape (h, w).
esp (float): Avoid dividing by zero. Default: 1e-6.
Returns:
tuple[Tensor]: the coordinates of the center point of the mask.
- center_h (Tensor): the center point of the height.
- center_w (Tensor): the center point of the width.
"""
|
https://github.com/zhanggang001/CEDNet/blob/305d6371db427bcf3c93b5f85a2609d05e9eb4f1/ced-mmdet/mmdet/core/utils/misc.py#L168-L187
|
305d6371db427bcf3c93b5f85a2609d05e9eb4f1
|
CEDNet
|
github_2023
|
zhanggang001
|
python
|
_init_predictor
|
def _init_predictor(self):
"""Initialize predictor layers of the head."""
self.conv_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
|
"""Initialize predictor layers of the head."""
|
https://github.com/zhanggang001/CEDNet/blob/305d6371db427bcf3c93b5f85a2609d05e9eb4f1/ced-mmdet/mmdet/models/dense_heads/anchor_free_head.py#L153-L157
|
305d6371db427bcf3c93b5f85a2609d05e9eb4f1
|
not1mm
|
github_2023
|
mbridak
|
python
|
cty_lookup
|
def cty_lookup(self, callsign: str) -> list:
"""Lookup callsign in cty.dat file.
Parameters
----------
callsign : str
callsign to lookup
Returns
-------
return : list
list of dicts containing the callsign and the station.
"""
callsign = callsign.upper()
for count in reversed(range(len(callsign))):
searchitem = callsign[: count + 1]
result = {
key: val for key, val in self.ctyfile.items() if key == searchitem
}
if not result:
continue
if result.get(searchitem).get("exact_match"):
if searchitem == callsign:
return result
continue
return result
|
"""Lookup callsign in cty.dat file.
Parameters
----------
callsign : str
callsign to lookup
Returns
-------
return : list
list of dicts containing the callsign and the station.
"""
|
https://github.com/mbridak/not1mm/blob/c7dbdaf4e509a865a1bf64bc037e0efac6b4e200/not1mm/__main__.py#L1972-L1997
|
c7dbdaf4e509a865a1bf64bc037e0efac6b4e200
|
not1mm
|
github_2023
|
mbridak
|
python
|
change_mode
|
def change_mode(self, mode: str, intended_freq=None) -> None:
"""
Change mode to given mode.
Send the new mode to the rig control.
Set the band indicator.
Set the window title.
Clear the inputs.
Read the CW macros.
Parameters
----------
mode : str
Mode to change to.
Returns
-------
None
"""
if mode in ("CW", "CW-U", "CW-L", "CWR"):
if self.rig_control and self.rig_control.online:
self.rig_control.set_mode(self.rig_control.last_cw_mode)
if self.pref.get("cwtype") == 3 and self.rig_control is not None:
if self.rig_control.interface == "flrig":
self.cwspeed_spinbox_changed()
self.rig_control.cat.set_flrig_cw_send(True)
else:
self.setmode("CW")
self.radio_state["mode"] = "CW"
band = getband(str(self.radio_state.get("vfoa", "0.0")))
self.set_band_indicator(band)
self.set_window_title()
self.clearinputs()
self.read_macros()
return
if mode in (
"DIGI-U",
"DIGI-L",
"RTTY",
"RTTY-R",
"LSB-D",
"USB-D",
"AM-D",
"FM-D",
):
if self.rig_control and self.rig_control.online:
self.rig_control.set_mode(self.rig_control.last_data_mode)
else:
self.radio_state["mode"] = "RTTY"
self.setmode("RTTY")
band = getband(str(self.radio_state.get("vfoa", "0.0")))
self.set_band_indicator(band)
self.set_window_title()
self.clearinputs()
self.read_macros()
return
if mode == "SSB":
if intended_freq:
freq = intended_freq
else:
freq = int(self.radio_state.get("vfoa", 0))
if freq > 10000000:
self.radio_state["mode"] = "USB"
else:
self.radio_state["mode"] = "LSB"
if self.rig_control and self.rig_control.online:
self.rig_control.set_mode(self.radio_state.get("mode"))
else:
self.setmode("SSB")
band = getband(str(self.radio_state.get("vfoa", "0.0")))
self.set_band_indicator(band)
self.set_window_title()
self.clearinputs()
self.read_macros()
|
"""
Change mode to given mode.
Send the new mode to the rig control.
Set the band indicator.
Set the window title.
Clear the inputs.
Read the CW macros.
Parameters
----------
mode : str
Mode to change to.
Returns
-------
None
"""
|
https://github.com/mbridak/not1mm/blob/c7dbdaf4e509a865a1bf64bc037e0efac6b4e200/not1mm/__main__.py#L3433-L3507
|
c7dbdaf4e509a865a1bf64bc037e0efac6b4e200
|
sd-webui-controlnet
|
github_2023
|
Mikubill
|
python
|
preprocess
|
def preprocess(
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Do preprocessing for DWPose model inference.
Args:
img (np.ndarray): Input image in shape.
input_size (tuple): Input image size in shape (w, h).
Returns:
tuple:
- resized_img (np.ndarray): Preprocessed image.
- center (np.ndarray): Center of image.
- scale (np.ndarray): Scale of image.
"""
# get shape of image
img_shape = img.shape[:2]
out_img, out_center, out_scale = [], [], []
if len(out_bbox) == 0:
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
for i in range(len(out_bbox)):
x0 = out_bbox[i][0]
y0 = out_bbox[i][1]
x1 = out_bbox[i][2]
y1 = out_bbox[i][3]
bbox = np.array([x0, y0, x1, y1])
# get center and scale
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
# do affine transformation
resized_img, scale = top_down_affine(input_size, scale, center, img)
# normalize image
mean = np.array([123.675, 116.28, 103.53])
std = np.array([58.395, 57.12, 57.375])
resized_img = (resized_img - mean) / std
out_img.append(resized_img)
out_center.append(center)
out_scale.append(scale)
return out_img, out_center, out_scale
|
"""Do preprocessing for DWPose model inference.
Args:
img (np.ndarray): Input image in shape.
input_size (tuple): Input image size in shape (w, h).
Returns:
tuple:
- resized_img (np.ndarray): Preprocessed image.
- center (np.ndarray): Center of image.
- scale (np.ndarray): Scale of image.
"""
|
https://github.com/Mikubill/sd-webui-controlnet/blob/56cec5b2958edf3b1807b7e7b2b1b5186dbd2f81/annotator/openpose/cv_ox_pose.py#L6-L48
|
56cec5b2958edf3b1807b7e7b2b1b5186dbd2f81
|
sd-webui-controlnet
|
github_2023
|
Mikubill
|
python
|
__init__
|
def __init__(self):
"""
Init method.
"""
super().__init__()
|
"""
Init method.
"""
|
https://github.com/Mikubill/sd-webui-controlnet/blob/56cec5b2958edf3b1807b7e7b2b1b5186dbd2f81/annotator/teed/Xsmish.py#L33-L37
|
56cec5b2958edf3b1807b7e7b2b1b5186dbd2f81
|
Time-Series-Library
|
github_2023
|
thuml
|
python
|
forward
|
def forward(self, coeffs):
"""
Args:
coeffs (yl, yh): tuple of lowpass and bandpass coefficients, should
match the format returned by DWT1DForward.
Returns:
Reconstructed input of shape :math:`(N, C_{in}, L_{in})`
Note:
Can have None for any of the highpass scales and will treat the
values as zeros (not in an efficient way though).
"""
x0, highs = coeffs
assert x0.ndim == 3, "Can only handle 3d inputs (N, C, L)"
mode = mode_to_int(self.mode)
# Do a multilevel inverse transform
for x1 in highs[::-1]:
if x1 is None:
x1 = torch.zeros_like(x0)
# 'Unpad' added signal
if x0.shape[-1] > x1.shape[-1]:
x0 = x0[..., :-1]
x0 = SFB1D.apply(x0, x1, self.g0, self.g1, mode, self.use_amp)
return x0
|
"""
Args:
coeffs (yl, yh): tuple of lowpass and bandpass coefficients, should
match the format returned by DWT1DForward.
Returns:
Reconstructed input of shape :math:`(N, C_{in}, L_{in})`
Note:
Can have None for any of the highpass scales and will treat the
values as zeros (not in an efficient way though).
"""
|
https://github.com/thuml/Time-Series-Library/blob/4ddf869d999424b037d451a4757e36813d66a13b/layers/DWT_Decomposition.py#L224-L249
|
4ddf869d999424b037d451a4757e36813d66a13b
|
tiktok-uploader
|
github_2023
|
wkaisertexas
|
python
|
get_auth_args
|
def get_auth_args():
"""
Generates a parser which is used to get all of the authentication information
"""
parser = ArgumentParser(
description='TikTok Auth is a program which can log you into multiple accounts sequentially'
)
# authentication arguments
parser.add_argument('-o', '--output', default='tmp',
help='The output folder to save the cookies to')
parser.add_argument('-i', '--input', help='A csv file with username and password')
# parser.add_argument('-h', '--header', default=True,
# help='The header of the csv file which contains the username and password')
parser.add_argument('-u', '--username', help='Your TikTok email / username')
parser.add_argument('-p', '--password', help='Your TikTok password')
return parser.parse_args()
|
"""
Generates a parser which is used to get all of the authentication information
"""
|
https://github.com/wkaisertexas/tiktok-uploader/blob/59dc97852b70a2f13be6a48c6046f089baa1054e/src/tiktok_uploader/cli.py#L112-L129
|
59dc97852b70a2f13be6a48c6046f089baa1054e
|
nastools
|
github_2023
|
mhdpdp
|
python
|
get_transfer_statistics
|
def get_transfer_statistics(self, data=None):
"""
查询转移历史统计数据
"""
MovieChartLabels = []
MovieNums = []
TvChartData = {}
TvNums = []
AnimeNums = []
for statistic in self.dbhelper.get_transfer_statistics():
if statistic[0] == "电影":
MovieChartLabels.append(statistic[1])
MovieNums.append(statistic[2])
else:
if not TvChartData.get(statistic[1]):
TvChartData[statistic[1]] = {"tv": 0, "anime": 0}
if statistic[0] == "电视剧":
TvChartData[statistic[1]]["tv"] += statistic[2]
elif statistic[0] == "动漫":
TvChartData[statistic[1]]["anime"] += statistic[2]
TvChartLabels = list(TvChartData)
for tv_data in TvChartData.values():
TvNums.append(tv_data.get("tv"))
AnimeNums.append(tv_data.get("anime"))
return {
"code": 0,
"MovieChartLabels": MovieChartLabels,
"MovieNums": MovieNums,
"TvChartLabels": TvChartLabels,
"TvNums": TvNums,
"AnimeNums": AnimeNums
}
|
"""
查询转移历史统计数据
"""
|
https://github.com/mhdpdp/nastools/blob/b9fa7cad74649fa4cd70e8bde378aa02a2d27c29/web/action.py#L3396-L3428
|
b9fa7cad74649fa4cd70e8bde378aa02a2d27c29
|
nastools
|
github_2023
|
mhdpdp
|
python
|
FilterRuleUpdate.post
|
@filterrule.doc(parser=parser)
def post(self):
"""
新增/修改规则
"""
return WebAction().api_action(cmd='add_filterrule', data=self.parser.parse_args())
|
"""
新增/修改规则
"""
|
https://github.com/mhdpdp/nastools/blob/b9fa7cad74649fa4cd70e8bde378aa02a2d27c29/web/apiv1.py#L1803-L1808
|
b9fa7cad74649fa4cd70e8bde378aa02a2d27c29
|
PyMammotion
|
github_2023
|
mikey0000
|
python
|
DeviceType.is_luba1
|
@staticmethod
def is_luba1(device_name: str, product_key: str = ""):
"""Check if the given device is of type LUBA.
This function determines if the device specified by 'device_name' is of
type LUBA. If 'product_key' is provided, it is used to further identify
the device type.
Args:
device_name (str): The name of the device.
product_key (str?): The product key associated with the device. Defaults to "".
Returns:
bool: True if the device is of type LUBA, False otherwise.
"""
if not product_key:
device_type = DeviceType.value_of_str(device_name)
else:
device_type = DeviceType.value_of_str(device_name, product_key)
return device_type.get_value() == DeviceType.LUBA.get_value()
|
"""Check if the given device is of type LUBA.
This function determines if the device specified by 'device_name' is of
type LUBA. If 'product_key' is provided, it is used to further identify
the device type.
Args:
device_name (str): The name of the device.
product_key (str?): The product key associated with the device. Defaults to "".
Returns:
bool: True if the device is of type LUBA, False otherwise.
"""
|
https://github.com/mikey0000/PyMammotion/blob/2c5e100b8cc50d393ff5ec460c612e1da5ec4935/pymammotion/utility/device_type.py#L127-L149
|
2c5e100b8cc50d393ff5ec460c612e1da5ec4935
|
GHOST
|
github_2023
|
dvl-tum
|
python
|
update
|
def update(oids, hids, dists, indices, events, m):
"""
tracks : my results of shape {tr_id: {'id', 'im_index', 'max_iou', 'bbox'}
num_frames : number of frames
"""
import pandas as pd
asso = dict()
hypo = dict()
cols = ['Type', 'id', 'frame', 'tr_id', 'iou', 'w', 'h']
events = pd.DataFrame(columns=cols)
for i in range(num_frames):
for tr_id, tr in self.tracks.items():
for t in tr:
if t['im_index'] == i:
if t['id'] in asso.keys():
h_o = asso[t['id']]
if tr_id == h_o:
TYPE = 'match'
else:
if h_o in hypo.keys():
TYPE = 'switch'
else:
TYPE = 'ascend'
elif tr_id == -1:
TYPE = 'fp'
elif tr_id in hypo.keys():
if t['id'] not in asso.keys():
TYPE = 'migrate'
elif hypo[tr_id] != t['id']:
TYPE = 'transfer'
df = pd.DataFrame([[TYPE, t['id'], i, tr_id, t['iou'], t['bbox']
[2]-t['bbox'][0], t['bbox'][3]-t['bbox'][1]]], columns=cols)
#self.dirty_events = True
oids = np.asarray(oids)
oids_masked = np.zeros_like(oids, dtype=np.bool)
hids = np.asarray(hids)
hids_masked = np.zeros_like(hids, dtype=np.bool)
dists = np.atleast_2d(dists).astype(float).reshape(
oids.shape[0], hids.shape[0]).copy()
if frameid is None:
assert self.auto_id, 'auto-id is not enabled'
if len(self._indices['FrameId']) > 0:
frameid = self._indices['FrameId'][-1] + 1
else:
frameid = 0
else:
assert not self.auto_id, 'Cannot provide frame id when auto-id is enabled'
eid = itertools.count()
# 0. Record raw events
no = len(oids)
nh = len(hids)
# Add a RAW event simply to ensure the frame is counted.
indices.append(frameid, next(eid))
events.append('RAW', np.nan, np.nan, np.nan)
# There must be at least one RAW event per object and hypothesis.
# Record all finite distances as RAW events.
valid_i, valid_j = np.where(np.isfinite(dists))
valid_dists = dists[valid_i, valid_j]
for i, j, dist_ij in zip(valid_i, valid_j, valid_dists):
indices.append(frameid, next(eid))
events.append('RAW', oids[i], hids[j], dist_ij)
# Add a RAW event for objects and hypotheses that were present but did
# not overlap with anything.
used_i = np.unique(valid_i)
used_j = np.unique(valid_j)
unused_i = np.setdiff1d(np.arange(no), used_i)
unused_j = np.setdiff1d(np.arange(nh), used_j)
for oid in oids[unused_i]:
indices.append(frameid, next(eid))
events.append('RAW', oid, np.nan, np.nan)
for hid in hids[unused_j]:
indices.append(frameid, next(eid))
events.append('RAW', np.nan, hid, np.nan)
if oids.size * hids.size > 0:
# 1. Try to re-establish tracks from previous correspondences
for i in range(oids.shape[0]):
# No need to check oids_masked[i] here.
if oids[i] not in self.m:
continue
hprev = self.m[oids[i]]
j, = np.where(~hids_masked & (hids == hprev))
if j.shape[0] == 0:
continue
j = j[0]
if np.isfinite(dists[i, j]):
o = oids[i]
h = hids[j]
oids_masked[i] = True
hids_masked[j] = True
self.m[oids[i]] = hids[j]
indices.append(frameid, next(eid))
events.append('MATCH', oids[i], hids[j], dists[i, j])
self.last_match[o] = frameid
self.hypHistory[h] = frameid
# 2. Try to remaining objects/hypotheses
dists[oids_masked, :] = np.nan
dists[:, hids_masked] = np.nan
rids, cids = linear_sum_assignment(dists)
for i, j in zip(rids, cids):
if not np.isfinite(dists[i, j]):
continue
o = oids[i]
h = hids[j]
is_switch = (o in self.m and
self.m[o] != h and
abs(frameid - self.last_occurrence[o]) <= self.max_switch_time)
cat1 = 'SWITCH' if is_switch else 'MATCH'
if cat1 == 'SWITCH':
if h not in self.hypHistory:
subcat = 'ASCEND'
indices.append(frameid, next(eid))
events.append(subcat, oids[i], hids[j], dists[i, j])
# ignore the last condition temporarily
is_transfer = (h in self.res_m and
self.res_m[h] != o)
# is_transfer = (h in self.res_m and
# self.res_m[h] != o and
# abs(frameid - self.last_occurrence[o]) <= self.max_switch_time)
cat2 = 'TRANSFER' if is_transfer else 'MATCH'
if cat2 == 'TRANSFER':
if o not in self.last_match:
subcat = 'MIGRATE'
indices.append(frameid, next(eid))
events.append(subcat, oids[i], hids[j], dists[i, j])
indices.append(frameid, next(eid))
events.append(cat2, oids[i], hids[j], dists[i, j])
if vf != '' and (cat1 != 'MATCH' or cat2 != 'MATCH'):
if cat1 == 'SWITCH':
vf.write('%s %d %d %d %d %d\n' % (
subcat[:2], o, self.last_match[o], self.m[o], frameid, h))
if cat2 == 'TRANSFER':
vf.write('%s %d %d %d %d %d\n' % (
subcat[:2], h, self.hypHistory[h], self.res_m[h], frameid, o))
self.hypHistory[h] = frameid
self.last_match[o] = frameid
indices.append(frameid, next(eid))
events.append(cat1, oids[i], hids[j], dists[i, j])
oids_masked[i] = True
hids_masked[j] = True
self.m[o] = h
self.res_m[h] = o
# 3. All remaining objects are missed
for o in oids[~oids_masked]:
indices.append(frameid, next(eid))
events.append('MISS', o, np.nan, np.nan)
if vf != '':
vf.write('FN %d %d\n' % (frameid, o))
# 4. All remaining hypotheses are false alarms
for h in hids[~hids_masked]:
indices.append(frameid, next(eid))
events.append('FP', np.nan, h, np.nan)
if vf != '':
vf.write('FP %d %d\n' % (frameid, h))
# 5. Update occurance state
for o in oids:
self.last_occurrence[o] = frameid
return frameid
|
"""
tracks : my results of shape {tr_id: {'id', 'im_index', 'max_iou', 'bbox'}
num_frames : number of frames
"""
|
https://github.com/dvl-tum/GHOST/blob/755a5dacfcf4dd122a4cac73061b24e9c84f3c19/src/utils.py#L119-L294
|
755a5dacfcf4dd122a4cac73061b24e9c84f3c19
|
safari
|
github_2023
|
HazyResearch
|
python
|
checkpoint_filter_fn
|
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
# For old models that I trained prior to conv based patchification
O, I, H, W = model.patch_embed.proj.weight.shape
v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# To resize pos embedding when using model at different size from pretrained weights
v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1),
model.patch_embed.grid_size)
out_dict[k] = v
return out_dict
|
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
https://github.com/HazyResearch/safari/blob/02220c69d247e5473616cd053a443ad99fd2559b/src/models/baselines/vit_all.py#L341-L357
|
02220c69d247e5473616cd053a443ad99fd2559b
|
safari
|
github_2023
|
HazyResearch
|
python
|
setup_filters
|
def setup_filters(self, filter_cls, filter_args):
"Initializes the explicit and implicit filters"
assert self.order >= 2, f'Order must be at least 2, (got {self.order})'
total_width = self.d_model * self.inner_factor * (self.order + 1)
self.short_filter = nn.Conv1d(
in_channels=total_width,
out_channels=total_width,
kernel_size=self.short_filter_order,
groups=total_width,
padding=self.short_filter_order - 1
)
filter_cls = instantiate(registry.layer, filter_cls, partial=True)
self.filter_fn = filter_cls(
self.head_dim * self.inner_factor * (self.order - 1),
order=self.filter_order,
seq_len=self.l_max,
channels=1,
dropout=self.filter_dropout,
**filter_args
)
if self.jit_filter: self.filter_fn = torch.jit.script(self.filter_fn, self.L)
|
"Initializes the explicit and implicit filters"
|
https://github.com/HazyResearch/safari/blob/02220c69d247e5473616cd053a443ad99fd2559b/src/models/sequence/hyena.py#L280-L303
|
02220c69d247e5473616cd053a443ad99fd2559b
|
VAD
|
github_2023
|
hustvl
|
python
|
custom_weight_dir_reduce_loss
|
@mmcv.jit(derivate=True, coderize=True)
def custom_weight_dir_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): num_sample, num_dir
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Average factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
# if weight is specified, apply element-wise weight
if weight is not None:
loss = loss * weight
# if avg_factor is not specified, just reduce the loss
if avg_factor is None:
raise ValueError('avg_factor should not be none for OrderedPtsL1Loss')
# loss = reduce_loss(loss, reduction)
else:
# if reduction is mean, then average the loss by avg_factor
if reduction == 'mean':
# import pdb;pdb.set_trace()
# loss = loss.permute(1,0,2,3).contiguous()
loss = loss.sum()
loss = loss / avg_factor
# if reduction is 'none', then do nothing, otherwise raise an error
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
|
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): num_sample, num_dir
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Average factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
|
https://github.com/hustvl/VAD/blob/70bb364aa3f33316960da06053c0d168628fb15f/projects/mmdet3d_plugin/VAD/utils/CD_loss.py#L33-L64
|
70bb364aa3f33316960da06053c0d168628fb15f
|
unicom
|
github_2023
|
deepglint
|
python
|
add_model_config
|
def add_model_config(path):
"""add model config path or file and update registry"""
if not isinstance(path, Path):
path = Path(path)
_MODEL_CONFIG_PATHS.append(path)
_rescan_model_configs()
|
"""add model config path or file and update registry"""
|
https://github.com/deepglint/unicom/blob/7e503c908a1b9deb6cd2c2d6287500b95233884f/downstream/llava/model/multimodal_encoder/dev_eva_clip/eva_clip/factory.py#L62-L67
|
7e503c908a1b9deb6cd2c2d6287500b95233884f
|
nas-tools
|
github_2023
|
receyuki
|
python
|
WebAction.set_config_value
|
@staticmethod
def set_config_value(cfg, cfg_key, cfg_value):
"""
根据Key设置配置值
"""
# 密码
if cfg_key == "app.login_password":
if cfg_value and not cfg_value.startswith("[hash]"):
cfg['app']['login_password'] = "[hash]%s" % generate_password_hash(
cfg_value)
else:
cfg['app']['login_password'] = cfg_value or "password"
return cfg
# 代理
if cfg_key == "app.proxies":
if cfg_value:
if not cfg_value.startswith("http") and not cfg_value.startswith("sock"):
cfg['app']['proxies'] = {
"https": "http://%s" % cfg_value, "http": "http://%s" % cfg_value}
else:
cfg['app']['proxies'] = {"https": "%s" %
cfg_value, "http": "%s" % cfg_value}
else:
cfg['app']['proxies'] = {"https": None, "http": None}
return cfg
# 豆瓣用户列表
if cfg_key == "douban.users":
vals = cfg_value.split(",")
cfg['douban']['users'] = vals
return cfg
# 索引器
if cfg_key == "jackett.indexers":
vals = cfg_value.split("\n")
cfg['jackett']['indexers'] = vals
return cfg
# 最大支持三层赋值
keys = cfg_key.split(".")
if keys:
if len(keys) == 1:
cfg[keys[0]] = cfg_value
elif len(keys) == 2:
if not cfg.get(keys[0]):
cfg[keys[0]] = {}
cfg[keys[0]][keys[1]] = cfg_value
elif len(keys) == 3:
if cfg.get(keys[0]):
if not cfg[keys[0]].get(keys[1]) or isinstance(cfg[keys[0]][keys[1]], str):
cfg[keys[0]][keys[1]] = {}
cfg[keys[0]][keys[1]][keys[2]] = cfg_value
else:
cfg[keys[0]] = {}
cfg[keys[0]][keys[1]] = {}
cfg[keys[0]][keys[1]][keys[2]] = cfg_value
return cfg
|
"""
根据Key设置配置值
"""
|
https://github.com/receyuki/nas-tools/blob/e3a43d4f0896db49de02e9a9201ef2e5877af56f/web/action.py#L299-L353
|
e3a43d4f0896db49de02e9a9201ef2e5877af56f
|
ChatFred
|
github_2023
|
chrislemke
|
python
|
post
|
async def post(self) -> "MultiDictProxy[Union[str, bytes, FileField]]":
"""Return POST parameters."""
if self._post is not None:
return self._post
if self._method not in self.POST_METHODS:
self._post = MultiDictProxy(MultiDict())
return self._post
content_type = self.content_type
if content_type not in (
"",
"application/x-www-form-urlencoded",
"multipart/form-data",
):
self._post = MultiDictProxy(MultiDict())
return self._post
out: MultiDict[Union[str, bytes, FileField]] = MultiDict()
if content_type == "multipart/form-data":
multipart = await self.multipart()
max_size = self._client_max_size
field = await multipart.next()
while field is not None:
size = 0
field_ct = field.headers.get(hdrs.CONTENT_TYPE)
if isinstance(field, BodyPartReader):
assert field.name is not None
# Note that according to RFC 7578, the Content-Type header
# is optional, even for files, so we can't assume it's
# present.
# https://tools.ietf.org/html/rfc7578#section-4.4
if field.filename:
# store file in temp file
tmp = tempfile.TemporaryFile()
chunk = await field.read_chunk(size=2**16)
while chunk:
chunk = field.decode(chunk)
tmp.write(chunk)
size += len(chunk)
if 0 < max_size < size:
tmp.close()
raise HTTPRequestEntityTooLarge(
max_size=max_size, actual_size=size
)
chunk = await field.read_chunk(size=2**16)
tmp.seek(0)
if field_ct is None:
field_ct = "application/octet-stream"
ff = FileField(
field.name,
field.filename,
cast(io.BufferedReader, tmp),
field_ct,
field.headers,
)
out.add(field.name, ff)
else:
# deal with ordinary data
value = await field.read(decode=True)
if field_ct is None or field_ct.startswith("text/"):
charset = field.get_charset(default="utf-8")
out.add(field.name, value.decode(charset))
else:
out.add(field.name, value)
size += len(value)
if 0 < max_size < size:
raise HTTPRequestEntityTooLarge(
max_size=max_size, actual_size=size
)
else:
raise ValueError(
"To decode nested multipart you need " "to use custom reader",
)
field = await multipart.next()
else:
data = await self.read()
if data:
charset = self.charset or "utf-8"
out.extend(
parse_qsl(
data.rstrip().decode(charset),
keep_blank_values=True,
encoding=charset,
)
)
self._post = MultiDictProxy(out)
return self._post
|
"""Return POST parameters."""
|
https://github.com/chrislemke/ChatFred/blob/4356986c2cc3eaf57b5329774c9e593c01554789/workflow/src/libs/aiohttp/web_request.py#L677-L771
|
4356986c2cc3eaf57b5329774c9e593c01554789
|
ChatFred
|
github_2023
|
chrislemke
|
python
|
add_put
|
def add_put(self, path: str, handler: Handler, **kwargs: Any) -> AbstractRoute:
"""Shortcut for add_route with method PUT."""
return self.add_route(hdrs.METH_PUT, path, handler, **kwargs)
|
"""Shortcut for add_route with method PUT."""
|
https://github.com/chrislemke/ChatFred/blob/4356986c2cc3eaf57b5329774c9e593c01554789/workflow/src/libs/aiohttp/web_urldispatcher.py#L1168-L1170
|
4356986c2cc3eaf57b5329774c9e593c01554789
|
ChatFred
|
github_2023
|
chrislemke
|
python
|
create_memory_object_stream
|
def create_memory_object_stream(
max_buffer_size: float = 0, item_type: type[T_Item] | None = None
) -> tuple[MemoryObjectSendStream[Any], MemoryObjectReceiveStream[Any]]:
"""
Create a memory object stream.
:param max_buffer_size: number of items held in the buffer until ``send()`` starts blocking
:param item_type: type of item, for marking the streams with the right generic type for
static typing (not used at run time)
:return: a tuple of (send stream, receive stream)
"""
if max_buffer_size != math.inf and not isinstance(max_buffer_size, int):
raise ValueError("max_buffer_size must be either an integer or math.inf")
if max_buffer_size < 0:
raise ValueError("max_buffer_size cannot be negative")
state: MemoryObjectStreamState = MemoryObjectStreamState(max_buffer_size)
return MemoryObjectSendStream(state), MemoryObjectReceiveStream(state)
|
"""
Create a memory object stream.
:param max_buffer_size: number of items held in the buffer until ``send()`` starts blocking
:param item_type: type of item, for marking the streams with the right generic type for
static typing (not used at run time)
:return: a tuple of (send stream, receive stream)
"""
|
https://github.com/chrislemke/ChatFred/blob/4356986c2cc3eaf57b5329774c9e593c01554789/workflow/src/libs/anyio/_core/_streams.py#L29-L47
|
4356986c2cc3eaf57b5329774c9e593c01554789
|
ChatFred
|
github_2023
|
chrislemke
|
python
|
_colors_to_code
|
def _colors_to_code(self, fg_color: str, bg_color: str) -> Iterable[str]:
"""
Return a tuple with the vt100 values that represent this color.
"""
# When requesting ANSI colors only, and both fg/bg color were converted
# to ANSI, ensure that the foreground and background color are not the
# same. (Unless they were explicitly defined to be the same color.)
fg_ansi = ""
def get(color: str, bg: bool) -> list[int]:
nonlocal fg_ansi
table = BG_ANSI_COLORS if bg else FG_ANSI_COLORS
if not color or self.color_depth == ColorDepth.DEPTH_1_BIT:
return []
# 16 ANSI colors. (Given by name.)
elif color in table:
return [table[color]]
# RGB colors. (Defined as 'ffffff'.)
else:
try:
rgb = self._color_name_to_rgb(color)
except ValueError:
return []
# When only 16 colors are supported, use that.
if self.color_depth == ColorDepth.DEPTH_4_BIT:
if bg: # Background.
if fg_color != bg_color:
exclude = [fg_ansi]
else:
exclude = []
code, name = _16_bg_colors.get_code(rgb, exclude=exclude)
return [code]
else: # Foreground.
code, name = _16_fg_colors.get_code(rgb)
fg_ansi = name
return [code]
# True colors. (Only when this feature is enabled.)
elif self.color_depth == ColorDepth.DEPTH_24_BIT:
r, g, b = rgb
return [(48 if bg else 38), 2, r, g, b]
# 256 RGB colors.
else:
return [(48 if bg else 38), 5, _256_colors[rgb]]
result: list[int] = []
result.extend(get(fg_color, False))
result.extend(get(bg_color, True))
return map(str, result)
|
"""
Return a tuple with the vt100 values that represent this color.
"""
|
https://github.com/chrislemke/ChatFred/blob/4356986c2cc3eaf57b5329774c9e593c01554789/workflow/src/libs/prompt_toolkit/output/vt100.py#L319-L374
|
4356986c2cc3eaf57b5329774c9e593c01554789
|
ChatFred
|
github_2023
|
chrislemke
|
python
|
extract_from_urllib3
|
def extract_from_urllib3():
"""
Undo monkey-patching by :func:`inject_into_urllib3`.
"""
util.SSLContext = orig_util_SSLContext
util.ssl_.SSLContext = orig_util_SSLContext
util.HAS_SNI = orig_util_HAS_SNI
util.ssl_.HAS_SNI = orig_util_HAS_SNI
util.IS_SECURETRANSPORT = False
util.ssl_.IS_SECURETRANSPORT = False
|
"""
Undo monkey-patching by :func:`inject_into_urllib3`.
"""
|
https://github.com/chrislemke/ChatFred/blob/4356986c2cc3eaf57b5329774c9e593c01554789/workflow/src/libs/urllib3/contrib/securetransport.py#L201-L210
|
4356986c2cc3eaf57b5329774c9e593c01554789
|
ChatFred
|
github_2023
|
chrislemke
|
python
|
Url.hostname
|
@property
def hostname(self):
"""For backwards-compatibility with urlparse. We're nice like that."""
return self.host
|
"""For backwards-compatibility with urlparse. We're nice like that."""
|
https://github.com/chrislemke/ChatFred/blob/4356986c2cc3eaf57b5329774c9e593c01554789/workflow/src/libs/urllib3/util/url.py#L109-L112
|
4356986c2cc3eaf57b5329774c9e593c01554789
|
catalyst
|
github_2023
|
PennyLaneAI
|
python
|
test_decomposition_nested
|
def test_decomposition_nested(self):
"""Tests decompositions of nested controlled operations"""
ctrl_op = C_ctrl(C_ctrl(lambda: qml.RZ(0.123, wires=0), control=1), control=2)()
expected = [
qml.ops.Controlled(qml.RZ(0.123, wires=0), control_wires=[1, 2]),
]
assert ctrl_op.decomposition() == expected
|
"""Tests decompositions of nested controlled operations"""
|
https://github.com/PennyLaneAI/catalyst/blob/729d468ad1bec692242c6b20560a2b9922debb31/frontend/test/pytest/test_quantum_control.py#L1654-L1661
|
729d468ad1bec692242c6b20560a2b9922debb31
|
catalyst
|
github_2023
|
PennyLaneAI
|
python
|
test_pattern_matching_optimization
|
@pytest.mark.xfail(
reason="QJIT fails with ValueError: Eagerly computing the adjoint (lazy=False) is only supported on single operators."
)
def test_pattern_matching_optimization(backend):
"""Test pattern_matching_optimization"""
def qnode_builder(device_name):
"""Builder"""
ops = [qml.S(0), qml.S(0), qml.Z(0)]
pattern = qml.tape.QuantumTape(ops)
@partial(qml.transforms.pattern_matching_optimization, pattern_tapes=[pattern])
@qml.qnode(qml.device(device_name, wires=5))
def qfunc():
qml.S(wires=0)
qml.Z(0)
qml.S(wires=1)
qml.CZ(wires=[0, 1])
qml.S(wires=1)
qml.S(wires=2)
qml.CZ(wires=[1, 2])
qml.S(wires=2)
return qml.expval(qml.X(0))
return qfunc
qnode_control = qnode_builder("default.qubit")
qnode_backend = qnode_builder(backend)
jax_jit = jax.jit(qnode_control)
compiled = qjit(qnode_backend)
expected = jax_jit()
observed = compiled()
_, expected_shape = jax.tree_util.tree_flatten(expected)
_, observed_shape = jax.tree_util.tree_flatten(observed)
assert np.allclose(expected, observed)
assert expected_shape == observed_shape
|
"""Test pattern_matching_optimization"""
|
https://github.com/PennyLaneAI/catalyst/blob/729d468ad1bec692242c6b20560a2b9922debb31/frontend/test/pytest/test_transform.py#L1340-L1379
|
729d468ad1bec692242c6b20560a2b9922debb31
|
ControlLoRA
|
github_2023
|
HighCWu
|
python
|
forward
|
def forward(self,
query,
key,
value,
query_pos=None,
key_pos=None,
attn_masks=None,
query_key_padding_mask=None,
key_padding_mask=None,
**kwargs):
"""Forward function for `TransformerCoder`.
Args:
query (Tensor): Input query with shape
`(num_queries, bs, embed_dims)`.
key (Tensor): The key tensor with shape
`(num_keys, bs, embed_dims)`.
value (Tensor): The value tensor with shape
`(num_keys, bs, embed_dims)`.
query_pos (Tensor): The positional encoding for `query`.
Default: None.
key_pos (Tensor): The positional encoding for `key`.
Default: None.
attn_masks (List[Tensor], optional): Each element is 2D Tensor
which is used in calculation of corresponding attention in
operation_order. Default: None.
query_key_padding_mask (Tensor): ByteTensor for `query`, with
shape [bs, num_queries]. Only used in self-attention
Default: None.
key_padding_mask (Tensor): ByteTensor for `query`, with
shape [bs, num_keys]. Default: None.
Returns:
Tensor: results with shape [num_queries, bs, embed_dims].
"""
for layer in self.layers:
query = layer(
query,
key,
value,
query_pos=query_pos,
key_pos=key_pos,
attn_masks=attn_masks,
query_key_padding_mask=query_key_padding_mask,
key_padding_mask=key_padding_mask,
**kwargs)
return query
|
"""Forward function for `TransformerCoder`.
Args:
query (Tensor): Input query with shape
`(num_queries, bs, embed_dims)`.
key (Tensor): The key tensor with shape
`(num_keys, bs, embed_dims)`.
value (Tensor): The value tensor with shape
`(num_keys, bs, embed_dims)`.
query_pos (Tensor): The positional encoding for `query`.
Default: None.
key_pos (Tensor): The positional encoding for `key`.
Default: None.
attn_masks (List[Tensor], optional): Each element is 2D Tensor
which is used in calculation of corresponding attention in
operation_order. Default: None.
query_key_padding_mask (Tensor): ByteTensor for `query`, with
shape [bs, num_queries]. Only used in self-attention
Default: None.
key_padding_mask (Tensor): ByteTensor for `query`, with
shape [bs, num_keys]. Default: None.
Returns:
Tensor: results with shape [num_queries, bs, embed_dims].
"""
|
https://github.com/HighCWu/ControlLoRA/blob/a6891215fc587af326ab1234718491741a5c2015/annotator/uniformer/mmcv/cnn/bricks/transformer.py#L549-L595
|
a6891215fc587af326ab1234718491741a5c2015
|
axlearn
|
github_2023
|
apple
|
python
|
CausalLmModelBuilder.v1_from_args
|
@classmethod
def v1_from_args(
cls, vocab_size: int, *, num_layers: int, hidden_dim: int, num_heads: int
) -> CausalLM:
"""Build a v1 Causal LM.
Args:
vocab_size: The vocabulary size.
num_layers: The number of transformer layers.
hidden_dim: The model hidden dimension.
num_heads: THe number of attention heads.
Returns:
Initialized model.
"""
model = CausalLM(
decoder=Decoder(
attention_mask=ALiBiAttentionLogitBiasLayer(num_heads),
emb=TransformerEmbeddings(Embedding(vocab_size, embedding_dim=hidden_dim)),
transformer=StackedTransformerLayer(
num_layers,
layer=TransformerLayer(
self_attention=TransformerAttentionLayer(
target_dim=hidden_dim,
source_dim=hidden_dim,
num_heads=num_heads,
structure="prenorm",
norm="rmsnorm",
qkv_linear_cls=FusedQKVLinear,
linear_biases=False,
),
feed_forward=TransformerFeedForwardLayer(
input_dim=hidden_dim,
hidden_dim=round(hidden_dim * (21.0 / 8.0)),
activation=(
_torch_activation_fn("nn.silu"),
_torch_activation_fn("linear"),
),
structure="prenorm",
norm="rmsnorm",
linear_biases=False,
),
),
),
output_norm="rmsnorm",
)
)
return model
|
"""Build a v1 Causal LM.
Args:
vocab_size: The vocabulary size.
num_layers: The number of transformer layers.
hidden_dim: The model hidden dimension.
num_heads: THe number of attention heads.
Returns:
Initialized model.
"""
|
https://github.com/apple/axlearn/blob/b9551871eae1b887a55b1e7d682cc6db7a51bf1e/axlearn/common/adapter_torch.py#L2061-L2108
|
b9551871eae1b887a55b1e7d682cc6db7a51bf1e
|
axlearn
|
github_2023
|
apple
|
python
|
__init__
|
def __init__(
self,
*,
input_size: tuple[int, int],
num_masking_patches: int,
num_attempts: int = 10,
min_mask_patches: int = 16,
min_aspect: float = 0.3,
max_mask_patches: Optional[int] = None,
max_aspect: Optional[float] = None,
):
"""Initializes MaskingGenerator.
Args:
input_size: an int tuple that represents (height, width) of the patchified target.
num_masking_patches: the number of patches to be masked.
num_attempts: the max number of attempts for one mask generation trial.
min_mask_patches: the min number of patches for one masking area.
max_mask_patches: the max number of patches for one masking area. If None, sets to
num_masking_patches.
min_aspect: the min aspect ratio (height/width) for one masking area.
max_aspect: the max aspect ratio for one masking area. If None, sets to 1 / min_aspect.
Raises:
ValueError: if min_aspect or max_aspect are below 0 or max_aspect is smaller than
min_aspect.
"""
self.height, self.width = input_size
# Total number of patches in the pachified input.
self.num_patches = self.height * self.width
self.num_masking_patches = num_masking_patches
self.num_attempts = num_attempts
self.min_mask_patches = min_mask_patches
self.max_mask_patches = (
num_masking_patches if max_mask_patches is None else max_mask_patches
)
max_aspect = max_aspect or 1 / min_aspect
if min_aspect <= 0 or max_aspect <= 0:
raise ValueError("Both min and max aspect ratios need to be positive.")
if min_aspect > max_aspect:
raise ValueError("min_aspect needs to be no greater than max_aspect.")
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect))
|
"""Initializes MaskingGenerator.
Args:
input_size: an int tuple that represents (height, width) of the patchified target.
num_masking_patches: the number of patches to be masked.
num_attempts: the max number of attempts for one mask generation trial.
min_mask_patches: the min number of patches for one masking area.
max_mask_patches: the max number of patches for one masking area. If None, sets to
num_masking_patches.
min_aspect: the min aspect ratio (height/width) for one masking area.
max_aspect: the max aspect ratio for one masking area. If None, sets to 1 / min_aspect.
Raises:
ValueError: if min_aspect or max_aspect are below 0 or max_aspect is smaller than
min_aspect.
"""
|
https://github.com/apple/axlearn/blob/b9551871eae1b887a55b1e7d682cc6db7a51bf1e/axlearn/vision/mask_generator.py#L30-L71
|
b9551871eae1b887a55b1e7d682cc6db7a51bf1e
|
axlearn
|
github_2023
|
apple
|
python
|
MobileNets.endpoints_dims
|
@property
def endpoints_dims(self) -> dict[str, int]:
"""A dict of {endpoint: dim} specifies dimension of intermediate representations."""
return self._endpoints_dims
|
"""A dict of {endpoint: dim} specifies dimension of intermediate representations."""
|
https://github.com/apple/axlearn/blob/b9551871eae1b887a55b1e7d682cc6db7a51bf1e/axlearn/vision/mobilenets.py#L514-L517
|
b9551871eae1b887a55b1e7d682cc6db7a51bf1e
|
rl4co
|
github_2023
|
ai4co
|
python
|
spatial_encoding
|
def spatial_encoding(td: TensorDict):
"""We use a spatial encoing as proposed in GraphFormer (https://arxiv.org/abs/2106.05234)
The spatial encoding in GraphFormer determines the distance of the shortest path between and
nodes i and j and uses a special value for node pairs that cannot be connected at all.
For any two operations i<j of the same job, we determine the number of operations to be completet
when starting at i before j can be started (e.g. i=3 and j=5 -> e=2) and for i>j the negative number of
operations that starting from j, have been completet before arriving at i (e.g. i=5 j=3 -> e=-2).
For i=j we set e=0 as well as for operations of different jobs.
:param torch.Tensor[bs, n_ops] ops_job_map: tensor specifying the index of its corresponding job
:return torch.Tensor[bs, n_ops, n_ops]: length of shortest path between any two operations
"""
bs, _, n_total_ops = td["job_ops_adj"].shape
max_ops_per_job = int(td["job_ops_adj"].sum(-1).max())
ops_job_map = td["ops_job_map"]
pad_mask = td["pad_mask"]
same_job = (ops_job_map[:, None] == ops_job_map[..., None]).to(torch.int32)
# mask padded
same_job[pad_mask.unsqueeze(2).expand_as(same_job)] = 0
same_job[pad_mask.unsqueeze(1).expand_as(same_job)] = 0
# take upper triangular of same_job and set diagonal to zero for counting purposes
upper_tri = torch.triu(same_job) - torch.diag(
torch.ones(n_total_ops, device=td.device)
)[None].expand_as(same_job)
# cumsum and masking of operations that do not belong to the same job
num_jumps = upper_tri.cumsum(2) * upper_tri
# mirror the matrix
num_jumps = num_jumps + num_jumps.transpose(1, 2)
# NOTE: shifted this logic into the spatial encoding module
# num_jumps = num_jumps + (-num_jumps.transpose(1,2))
assert not torch.any(num_jumps >= max_ops_per_job)
# special value for ops of different jobs and self-loops
num_jumps = torch.where(num_jumps == 0, -1, num_jumps)
self_mask = torch.eye(n_total_ops).repeat(bs, 1, 1).bool()
num_jumps[self_mask] = 0
return num_jumps
|
"""We use a spatial encoing as proposed in GraphFormer (https://arxiv.org/abs/2106.05234)
The spatial encoding in GraphFormer determines the distance of the shortest path between and
nodes i and j and uses a special value for node pairs that cannot be connected at all.
For any two operations i<j of the same job, we determine the number of operations to be completet
when starting at i before j can be started (e.g. i=3 and j=5 -> e=2) and for i>j the negative number of
operations that starting from j, have been completet before arriving at i (e.g. i=5 j=3 -> e=-2).
For i=j we set e=0 as well as for operations of different jobs.
:param torch.Tensor[bs, n_ops] ops_job_map: tensor specifying the index of its corresponding job
:return torch.Tensor[bs, n_ops, n_ops]: length of shortest path between any two operations
"""
|
https://github.com/ai4co/rl4co/blob/643ef99d118ce535e615a9441838782a2decf412/rl4co/envs/scheduling/fjsp/utils.py#L157-L193
|
643ef99d118ce535e615a9441838782a2decf412
|
SubpopBench
|
github_2023
|
YyzHarry
|
python
|
_create_examples
|
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[3]
label = line[1]
examples.append(
InputExample(guid=guid,
text_a=text_a,
text_b=None,
label=label))
return examples
|
"""Creates examples for the training and dev sets."""
|
https://github.com/YyzHarry/SubpopBench/blob/4d3dbbe21029666ef19d040e110ec22908640c5b/utils_glue.py#L183-L195
|
4d3dbbe21029666ef19d040e110ec22908640c5b
|
semantic-kernel
|
github_2023
|
microsoft
|
python
|
_get_database_proxy
|
async def _get_database_proxy(self, **kwargs) -> DatabaseProxy:
"""Gets the database proxy."""
try:
if await self._does_database_exist():
return self.cosmos_client.get_database_client(self.database_name)
if self.create_database:
return await self.cosmos_client.create_database(self.database_name, **kwargs)
raise VectorStoreOperationException(f"Database '{self.database_name}' does not exist.")
except Exception as e:
raise VectorStoreOperationException(f"Failed to get database proxy for '{id}'.") from e
|
"""Gets the database proxy."""
|
https://github.com/microsoft/semantic-kernel/blob/cd84e877980187e62d86bb5bc6086d264e62ee83/python/semantic_kernel/connectors/memory/azure_cosmos_db/azure_cosmos_db_no_sql_base.py#L101-L111
|
cd84e877980187e62d86bb5bc6086d264e62ee83
|
semantic-kernel
|
github_2023
|
microsoft
|
python
|
_get_underlying_type
|
def _get_underlying_type(annotation: Any) -> Any:
"""Get the underlying type of the annotation."""
if isinstance(annotation, types.UnionType):
return _get_non_none_type(annotation.__args__)
if hasattr(annotation, "__origin__"):
if annotation.__origin__ is Union:
return _get_non_none_type(get_args(annotation))
if isinstance(annotation.__origin__, types.UnionType):
return _get_non_none_type(annotation.__origin__.__args__)
return annotation.__origin__
return annotation
|
"""Get the underlying type of the annotation."""
|
https://github.com/microsoft/semantic-kernel/blob/cd84e877980187e62d86bb5bc6086d264e62ee83/python/semantic_kernel/functions/kernel_function_decorator.py#L88-L102
|
cd84e877980187e62d86bb5bc6086d264e62ee83
|
semantic-kernel
|
github_2023
|
microsoft
|
python
|
get_collections
|
async def get_collections(self) -> list[str]:
"""Nullifies behavior of SemanticTextMemoryBase get_collections."""
return []
|
"""Nullifies behavior of SemanticTextMemoryBase get_collections."""
|
https://github.com/microsoft/semantic-kernel/blob/cd84e877980187e62d86bb5bc6086d264e62ee83/python/semantic_kernel/memory/null_memory.py#L49-L51
|
cd84e877980187e62d86bb5bc6086d264e62ee83
|
semantic-kernel
|
github_2023
|
microsoft
|
python
|
azure_cognitive_search_memory_store
|
@pytest.fixture
def azure_cognitive_search_memory_store(azure_ai_search_unit_test_env):
"""Fixture to instantiate AzureCognitiveSearchMemoryStore with basic configuration."""
return AzureCognitiveSearchMemoryStore(
1536, "https://test.search.windows.net", azure_credentials=AzureKeyCredential("test_key")
)
|
"""Fixture to instantiate AzureCognitiveSearchMemoryStore with basic configuration."""
|
https://github.com/microsoft/semantic-kernel/blob/cd84e877980187e62d86bb5bc6086d264e62ee83/python/tests/unit/memory/test_azure_cognitive_search_memory_store_unit_tests.py#L13-L18
|
cd84e877980187e62d86bb5bc6086d264e62ee83
|
StableDiffusionReconstruction
|
github_2023
|
yu-takagi
|
python
|
forward
|
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
# output += res
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
output = self.out_conv(output)
return output
|
"""Forward pass.
Returns:
tensor: output
"""
|
https://github.com/yu-takagi/StableDiffusionReconstruction/blob/e187d4b3db1d647ee3e1b4256a2068ffd15df683/codes/diffusion_sd2/stablediffusion/ldm/modules/midas/midas/blocks.py#L320-L341
|
e187d4b3db1d647ee3e1b4256a2068ffd15df683
|
SillyTavern-Extras
|
github_2023
|
SillyTavern
|
python
|
posedict_to_pose
|
def posedict_to_pose(posedict: Dict[str, float]) -> List[float]:
"""Convert a posedict (from an emotion JSON) into a list of morph values (in the order the models expect them)."""
# sanity check
unrecognized_keys = set(posedict.keys()) - set(posedict_keys)
if unrecognized_keys:
logger.warning(f"posedict_to_pose: ignoring unrecognized keys in posedict: {unrecognized_keys}")
# Missing keys are fine - keys for zero values can simply be omitted.
pose = [0.0 for i in range(len(posedict_keys))]
for idx, key in enumerate(posedict_keys):
pose[idx] = posedict.get(key, 0.0)
return pose
|
"""Convert a posedict (from an emotion JSON) into a list of morph values (in the order the models expect them)."""
|
https://github.com/SillyTavern/SillyTavern-Extras/blob/fdc1ec04b632b1d871cc0ad3a9aa132e985fc398/talkinghead/tha3/app/util.py#L118-L129
|
fdc1ec04b632b1d871cc0ad3a9aa132e985fc398
|
BiFormer
|
github_2023
|
rayleizhu
|
python
|
to_tensor
|
def to_tensor(self, dtype, device):
"""See :func:`BaseInstanceMasks.to_tensor`."""
if len(self.masks) == 0:
return torch.empty((0, self.height, self.width),
dtype=dtype,
device=device)
ndarray_masks = self.to_ndarray()
return torch.tensor(ndarray_masks, dtype=dtype, device=device)
|
"""See :func:`BaseInstanceMasks.to_tensor`."""
|
https://github.com/rayleizhu/BiFormer/blob/1697bbbeafb8680524898f1dcaac10defd0604be/object_detection/mmdet/core/mask/structures.py#L881-L888
|
1697bbbeafb8680524898f1dcaac10defd0604be
|
BiFormer
|
github_2023
|
rayleizhu
|
python
|
__call__
|
def __call__(self, results):
"""Call function to load proposals from file.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded proposal annotations.
"""
proposals = results['proposals']
if proposals.shape[1] not in (4, 5):
raise AssertionError(
'proposals should have shapes (n, 4) or (n, 5), '
f'but found {proposals.shape}')
proposals = proposals[:, :4]
if self.num_max_proposals is not None:
proposals = proposals[:self.num_max_proposals]
if len(proposals) == 0:
proposals = np.array([[0, 0, 0, 0]], dtype=np.float32)
results['proposals'] = proposals
results['bbox_fields'].append('proposals')
return results
|
"""Call function to load proposals from file.
Args:
results (dict): Result dict from :obj:`mmdet.CustomDataset`.
Returns:
dict: The dict contains loaded proposal annotations.
"""
|
https://github.com/rayleizhu/BiFormer/blob/1697bbbeafb8680524898f1dcaac10defd0604be/object_detection/mmdet/datasets/pipelines/loading.py#L401-L425
|
1697bbbeafb8680524898f1dcaac10defd0604be
|
BiFormer
|
github_2023
|
rayleizhu
|
python
|
forward
|
def forward(self, x):
"""Forward function."""
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = 0
for j in range(self.num_branches):
if i == j:
y += x[j]
else:
y += self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
|
"""Forward function."""
|
https://github.com/rayleizhu/BiFormer/blob/1697bbbeafb8680524898f1dcaac10defd0604be/object_detection/mmdet/models/backbones/hrnet.py#L177-L194
|
1697bbbeafb8680524898f1dcaac10defd0604be
|
BiFormer
|
github_2023
|
rayleizhu
|
python
|
varifocal_loss
|
@mmcv.jit(derivate=True, coderize=True)
def varifocal_loss(pred,
target,
weight=None,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
reduction='mean',
avg_factor=None):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the
number of classes
target (torch.Tensor): The learning target of the iou-aware
classification score with shape (N, C), C is the number of classes.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal Loss.
Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive example with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
# pred and target should be of the same size
assert pred.size() == target.size()
pred_sigmoid = pred.sigmoid()
target = target.type_as(pred)
if iou_weighted:
focal_weight = target * (target > 0.0).float() + \
alpha * (pred_sigmoid - target).abs().pow(gamma) * \
(target <= 0.0).float()
else:
focal_weight = (target > 0.0).float() + \
alpha * (pred_sigmoid - target).abs().pow(gamma) * \
(target <= 0.0).float()
loss = F.binary_cross_entropy_with_logits(
pred, target, reduction='none') * focal_weight
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
|
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the
number of classes
target (torch.Tensor): The learning target of the iou-aware
classification score with shape (N, C), C is the number of classes.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal Loss.
Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive example with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
|
https://github.com/rayleizhu/BiFormer/blob/1697bbbeafb8680524898f1dcaac10defd0604be/object_detection/mmdet/models/losses/varifocal_loss.py#L9-L55
|
1697bbbeafb8680524898f1dcaac10defd0604be
|
PegasusSimulator
|
github_2023
|
PegasusSimulator
|
python
|
PeopleManager.get_people_manager
|
@staticmethod
def get_people_manager():
"""
Method that returns the current people manager.
"""
return PeopleManager()
|
"""
Method that returns the current people manager.
"""
|
https://github.com/PegasusSimulator/PegasusSimulator/blob/31367ff57d2c44eb39d8fc7fced5044a24a930eb/extensions/pegasus.simulator/pegasus/simulator/logic/people_manager.py#L59-L64
|
31367ff57d2c44eb39d8fc7fced5044a24a930eb
|
foundry-dev-tools
|
github_2023
|
emdgroup
|
python
|
_convert_old_conf
|
def _convert_old_conf(console: Console, path: Path) -> str:
"""Reads old config file and converts it to the v2 toml."""
cp = ConfigParser()
cp.read_string(path.read_text())
if not cp.has_section("default"):
console.print(f"The config file {path!s} does not contain any configuration, nothing to migrate.")
sys.exit(1)
v1_config = dict(cp.items("default"))
v2_config = v1_to_v2_config_dict(v1_config, env=False, get_config=False)
v2_config_toml = tomli_w.dumps(v2_config)
console.print(
Markdown(f"Your v1 project config converted to the v2 format looks like this:\n```toml\n{v2_config_toml}\n```"),
)
return v2_config_toml
|
"""Reads old config file and converts it to the v2 toml."""
|
https://github.com/emdgroup/foundry-dev-tools/blob/605e8c1d810dc67f45cefad7edc3f368f39b0d2c/libs/foundry-dev-tools/src/foundry_dev_tools/cli/config.py#L180-L194
|
605e8c1d810dc67f45cefad7edc3f368f39b0d2c
|
mmrotate-dcfl
|
github_2023
|
Chasel-Tsui
|
python
|
_resize_seg
|
def _resize_seg(self, results):
"""Resize semantic segmentation map with ``results['scale']``."""
for key in results.get('seg_fields', []):
if self.keep_ratio:
gt_seg = mmcv.imrescale(
results[key],
results['scale'],
interpolation='nearest',
backend=self.backend)
else:
gt_seg = mmcv.imresize(
results[key],
results['scale'],
interpolation='nearest',
backend=self.backend)
results[key] = gt_seg
|
"""Resize semantic segmentation map with ``results['scale']``."""
|
https://github.com/Chasel-Tsui/mmrotate-dcfl/blob/d60ca27234a3276a4ca714b5ad616366a4bbdd9a/mmdet/datasets/pipelines/transforms.py#L268-L283
|
d60ca27234a3276a4ca714b5ad616366a4bbdd9a
|
mmrotate-dcfl
|
github_2023
|
Chasel-Tsui
|
python
|
simple_test
|
def simple_test(self, img, img_metas, rescale=False):
"""Test function without test time augmentation.
Args:
imgs (list[torch.Tensor]): List of multiple images
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[np.ndarray]: proposals
"""
x = self.extract_feat(img)
# get origin input shape to onnx dynamic input shape
if torch.onnx.is_in_onnx_export():
img_shape = torch._shape_as_tensor(img)[2:]
img_metas[0]['img_shape_for_onnx'] = img_shape
proposal_list = self.rpn_head.simple_test_rpn(x, img_metas)
if rescale:
for proposals, meta in zip(proposal_list, img_metas):
proposals[:, :4] /= proposals.new_tensor(meta['scale_factor'])
if torch.onnx.is_in_onnx_export():
return proposal_list
return [proposal.cpu().numpy() for proposal in proposal_list]
|
"""Test function without test time augmentation.
Args:
imgs (list[torch.Tensor]): List of multiple images
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[np.ndarray]: proposals
"""
|
https://github.com/Chasel-Tsui/mmrotate-dcfl/blob/d60ca27234a3276a4ca714b5ad616366a4bbdd9a/mmdet/models/detectors/rpn.py#L91-L115
|
d60ca27234a3276a4ca714b5ad616366a4bbdd9a
|
nas-tools
|
github_2023
|
linyuan0213
|
python
|
WebAction.__get_site
|
@staticmethod
def __get_site(data):
"""
查询单个站点信息
"""
tid = data.get("id")
site_free = False
site_2xfree = False
site_hr = False
if tid:
ret = Sites().get_sites(siteid=tid)
if ret.get("signurl"):
site_attr = SiteConf().get_grap_conf(ret.get("signurl"))
if site_attr.get("FREE"):
site_free = True
if site_attr.get("2XFREE"):
site_2xfree = True
if site_attr.get("HR"):
site_hr = True
else:
ret = []
return {"code": 0, "site": ret, "site_free": site_free, "site_2xfree": site_2xfree, "site_hr": site_hr}
|
"""
查询单个站点信息
"""
|
https://github.com/linyuan0213/nas-tools/blob/0badded472a89b9171abba049ea05bd6f3611364/web/action.py#L1153-L1174
|
0badded472a89b9171abba049ea05bd6f3611364
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.