File size: 6,190 Bytes
d0ba0ea
 
 
c930412
d0ba0ea
 
c930412
 
d0ba0ea
c930412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0ba0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a33652
d0ba0ea
 
 
 
3a33652
d0ba0ea
 
3a33652
 
d0ba0ea
 
 
3a33652
d0ba0ea
 
 
 
 
3a33652
 
d0ba0ea
 
3a33652
 
d0ba0ea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
language:
- ar
license: cc-by-sa-4.0
size_categories:
- 10K<n<100K
task_categories:
- text-classification
pretty_name: BAREC Corpus v1.0
tags:
- readability
dataset_info:
  features:
  - name: ID
    dtype: int64
  - name: Sentence
    dtype: string
  - name: Word_Count
    dtype: int64
  - name: Word
    dtype: string
  - name: Lex
    dtype: string
  - name: D3Tok
    dtype: string
  - name: D3Lex
    dtype: string
  - name: Readability_Level
    dtype: string
  - name: Readability_Level_19
    dtype: int64
  - name: Readability_Level_7
    dtype: int64
  - name: Readability_Level_5
    dtype: int64
  - name: Readability_Level_3
    dtype: int64
  - name: Annotator
    dtype: string
  - name: Document
    dtype: string
  - name: Source
    dtype: string
  - name: Book
    dtype: string
  - name: Author
    dtype: string
  - name: Domain
    dtype: string
  - name: Text_Class
    dtype: string
  splits:
  - name: train
    num_bytes: 46655304
    num_examples: 54845
  - name: dev
    num_bytes: 5917980
    num_examples: 7310
  - name: test
    num_bytes: 6139540
    num_examples: 7286
  download_size: 23742307
  dataset_size: 58712824
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: dev
    path: data/dev-*
  - split: test
    path: data/test-*
---

# BAREC Corpus v1.0

## Dataset Summary

**BAREC** (the Balanced Arabic Readability Evaluation Corpus) is a large-scale dataset for **fine-grained Arabic readability assessment**.
The dataset includes over **1M words**, annotated at the **sentence level** across **19 readability levels**, with additional mappings to coarser 7, 5, and 3 level schemes.

---

## Supported Tasks

The dataset supports **multi-class readability classification** in the following formats:

- **19 levels** (default)
- **7 levels**
- **5 levels**
- **3 levels**

---

### Languages

- **Arabic** (Modern Standard Arabic)

---

## Dataset Structure

### Data Instances

`{'ID': 10100010008, 'Sentence': 'عيد سعيد', 'Word_Count': 2, 'Word': 'عيد سعيد', 'Lex': 'عيد سعيد', 'D3Tok': 'عيد سعيد', 'D3Lex': 'عيد سعيد', 'Readability_Level': '2-ba', 'Readability_Level_19': 2, 'Readability_Level_7': 1, 'Readability_Level_5': 1, 'Readability_Level_3': 1, 'Annotator': 'A4', 'Document': 'BAREC_Majed_0229_1983_001.txt', 'Source': 'Majed', 'Book': 'Edition: 229', 'Author': '#', 'Domain': 'Arts & Humanities', 'Text_Class': 'Foundational'}`

### Data Fields

- **ID**: Unique sentence identifier.
- **Sentence**: The sentence text.
- **Word_Count**: Number of words in the sentence.
- **Word**: Simply tokenized and dediacritized sentences.
- **Lex**: Each word is replaced by its predicited lemma (dediacritized).
- **D3Tok**: We tokenize words into their base and clitics forms.
- **D3Lex**: We replace the base forms in **D3Tok** with the predicited lemmas.
- **Readability_Level**: The readability level in `19-levels` scheme, ranging from `1-alif` to `19-qaf`.
- **Readability_Level_19**: The readability level in `19-levels` scheme, ranging from `1` to `19`.
- **Readability_Level_7**: The readability level in `7-levels` scheme, ranging from `1` to `7`.
- **Readability_Level_5**: The readability level in `5-levels` scheme, ranging from `1` to `5`.
- **Readability_Level_3**: The readability level in `3-levels` scheme, ranging from `1` to `3`.
- **Annotator**: The annotator ID (`A1-A5` or `IAA`).
- **Document**: Source document file name.
- **Source**: Document source.
- **Book**: Book name.
- **Author**: Author name.
- **Domain**: Domain (`Arts & Humanities`, `STEM` or `Social Sciences`).
- **Text_Class**: Readership group (`Foundational`, `Advanced` or `Specialized`).

### Data Splits

- The BAREC dataset has three splits: *Train* (80%), *Dev* (10%), and *Test* (10%).
- The splits are in the document level.
- The splits are balanced accross *Readability Levels*, *Domains*, and *Text Classes*.

---

## Evaluation

We define the Readability Assessment task as an ordinal classification task. The following metrics are used for evaluation:

- **Accuracy (Acc<sup>19</sup>):** The percentage of cases where reference and prediction classes match in the 19-level scheme.
- **Accuracy (Acc<sup>7</sup>, Acc<sup>5</sup>, Acc<sup>3</sup>):** The percentage of cases where reference and prediction classes match after collapsing the 19 levels into 7, 5, or 3 levels, respectively.
- **Adjacent Accuracy (±1 Acc<sup>19</sup>):** Also known as off-by-1 accuracy. The proportion of predictions that are either exactly correct or off by at most one level in the 19-level scheme.
- **Average Distance (Dist):** Also known as Mean Absolute Error (MAE). Measures the average absolute difference between predicted and true labels.
- **Quadratic Weighted Kappa (QWK):** An extension of Cohen’s Kappa that measures the agreement between predicted and true labels, applying a quadratic penalty to larger misclassifications (i.e., predictions farther from the true label are penalized more heavily).

---

## Citation

If you use BAREC in your work, please cite the following papers:

```
@inproceedings{elmadani-etal-2025-readability,
    title = "A Large and Balanced Corpus for Fine-grained {A}rabic Readability Assessment",
    author = "Elmadani, Khalid N.  and
      Habash, Nizar  and
      Taha-Thomure, Hanada",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
    month = jul,
    year = "2025",
    address = "Vienna, Austria",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2025.findings-acl.842/"
}

@inproceedings{habash-etal-2025-guidelines,
    title = "Guidelines for Fine-grained Sentence-level {A}rabic Readability Annotation",
    author = "Habash, Nizar  and
      Taha-Thomure, Hanada  and
      Elmadani, Khalid N.  and
      Zeino, Zeina  and
      Abushmaes, Abdallah",
    booktitle = "Proceedings of the 19th Linguistic Annotation Workshop (LAW-XIX-2025)",
    month = jul,
    year = "2025",
    address = "Vienna, Austria",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2025.law-1.30/"
}
```