KhalidNElmadani commited on
Commit
d0ba0ea
·
verified ·
1 Parent(s): 15a3437

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -3
README.md CHANGED
@@ -1,3 +1,116 @@
1
- ---
2
- license: cc-by-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - ar
7
+ tags:
8
+ - readability
9
+ size_categories:
10
+ - 10K<n<100K
11
+ pretty_name: BAREC Corpus v1.0
12
+ ---
13
+
14
+ # BAREC Corpus v1.0
15
+
16
+ ## Dataset Summary
17
+
18
+ **BAREC** (the Balanced Arabic Readability Evaluation Corpus) is a large-scale dataset for **fine-grained Arabic readability assessment**.
19
+ The dataset includes over **1M words**, annotated at the **sentence level** across **19 readability levels**, with additional mappings to coarser 7, 5, and 3 level schemes.
20
+
21
+ ---
22
+
23
+ ## Supported Tasks
24
+
25
+ The dataset supports **multi-class readability classification** in the following formats:
26
+
27
+ - **19 levels** (default)
28
+ - **7 levels**
29
+ - **5 levels**
30
+ - **3 levels**
31
+
32
+ ---
33
+
34
+ ### Languages
35
+
36
+ - **Arabic** (Modern Standard Arabic)
37
+
38
+ ---
39
+
40
+ ## Dataset Structure
41
+
42
+ ### Data Instances
43
+
44
+ `{'ID': 10100010008, 'Sentence': 'عيد سعيد', 'Word_Count': 2, 'Word': 'عيد سعيد', 'Lex': 'عيد سعيد', 'D3Tok': 'عيد سعيد', 'D3Lex': 'عيد سعيد', 'Readability_Level': '2-ba', 'Readability_Level_19': 2, 'Readability_Level_7': 1, 'Readability_Level_5': 1, 'Readability_Level_3': 1, 'Annotator': 'A4', 'Document': 'BAREC_Majed_0229_1983_001.txt', 'Source': 'Majed', 'Book': 'Edition: 229', 'Author': '#', 'Domain': 'Arts & Humanities', 'Text_Class': 'Foundational'}`
45
+
46
+ ### Data Fields
47
+
48
+ - **ID**: Unique sentence identifier.
49
+ - **Sentence**: The sentence text.
50
+ - **Word_Count**: Number of words in the sentence.
51
+ - **Word**: Simply tokenized and dediacritized sentences.
52
+ - **Lex**: Each word is replaced by its predicited lemma (dediacritized).
53
+ - **D3Tok**: We tokenize words into their base and clitics forms.
54
+ - **D3Lex**: We replace the base forms in **D3Tok** with the predicited lemmas.
55
+ - **Readability_Level**: The readability level in `19-levels` scheme, ranging from `1-alif` to `19-qaf`.
56
+ - **Readability_Level_19**: The readability level in `19-levels` scheme, ranging from `1` to `19`.
57
+ - **Readability_Level_7**: The readability level in `7-levels` scheme, ranging from `1` to `7`.
58
+ - **Readability_Level_5**: The readability level in `5-levels` scheme, ranging from `1` to `5`.
59
+ - **Readability_Level_3**: The readability level in `3-levels` scheme, ranging from `1` to `3`.
60
+ - **Annotator**: The annotator ID (`A1-A5` or `IAA`).
61
+ - **Document**: Source document file name.
62
+ - **Source**: Document source.
63
+ - **Book**: Book name.
64
+ - **Author**: Author name.
65
+ - **Domain**: Domain (`Arts & Humanities`, `STEM` or `Social Sciences`).
66
+ - **Text_Class**: Readership group (`Foundational`, `Advanced` or `Specialized`).
67
+
68
+ ### Data Splits
69
+
70
+ - The BAREC dataset has three splits: *Train* (80%), *Dev* (10%), and *Test* (10%).
71
+ - The splits are in the document level.
72
+ - The splits are balanced accross *Readability Levels*, *Domains*, and *Text Classes*.
73
+
74
+ ---
75
+
76
+ ## Evaluation
77
+
78
+ We define the Readability Assessment task as an ordinal classification task. The following metrics are used for evaluation:
79
+
80
+ - **Accuracy (Acc<sup>19</sup>):** The percentage of cases where reference and prediction classes match in the 19-level scheme.
81
+ - **Accuracy (Acc<sup>7</sup>, Acc<sup>5</sup>, Acc<sup>3</sup>):** The percentage of cases where reference and prediction classes match after collapsing the 19 levels into 7, 5, or 3 levels, respectively.
82
+ - **Adjacent Accuracy (±1 Acc<sup>19</sup>):** Also known as off-by-1 accuracy. The proportion of predictions that are either exactly correct or off by at most one level in the 19-level scheme.
83
+ - **Average Distance (Dist):** Also known as Mean Absolute Error (MAE). Measures the average absolute difference between predicted and true labels.
84
+ - **Quadratic Weighted Kappa (QWK):** An extension of Cohen’s Kappa that measures the agreement between predicted and true labels, applying a quadratic penalty to larger misclassifications (i.e., predictions farther from the true label are penalized more heavily).
85
+
86
+ ---
87
+
88
+ ## Citation
89
+
90
+ If you use BAREC in your work, please cite the following papers:
91
+
92
+ ```
93
+ @inproceedings{elmadani-etal-2025-readability,
94
+ title = "A Large and Balanced Corpus for Fine-grained Arabic Readability Assessment",
95
+ author = "Elmadani, Khalid N. and
96
+ Habash, Nizar and
97
+ Taha-Thomure, Hanada",
98
+ booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
99
+ year = "2025",
100
+ address = "Vienna, Austria",
101
+ publisher = "Association for Computational Linguistics"
102
+ }
103
+
104
+ @inproceedings{habash-etal-2025-guidelines,
105
+ title = "Guidelines for Fine-grained Sentence-level Arabic Readability Annotation",
106
+ author = "Habash, Nizar and
107
+ Taha-Thomure, Hanada and
108
+ Elmadani, Khalid N. and
109
+ Zeino, Zeina and
110
+ Abushmaes, Abdallah",
111
+ booktitle = "Proceedings of the 19th Linguistic Annotation Workshop (LAW-XIX)",
112
+ year = "2025",
113
+ address = "Vienna, Austria",
114
+ publisher = "Association for Computational Linguistics"
115
+ }
116
+ ```