codealchemist01's picture
Upload folder using huggingface_hub
52ad621 verified
metadata
language: en
license: apache-2.0
tags:
  - financial-sentiment
  - sentiment-analysis
  - finance
  - nlp
  - transformers
datasets:
  - zeroshot/twitter-financial-news-sentiment
metrics:
  - accuracy
  - f1
model-index:
  - name: financial-sentiment-distilbert
    results:
      - task:
          type: text-classification
          name: Financial Sentiment Analysis
        dataset:
          name: Twitter Financial News Sentiment
          type: zeroshot/twitter-financial-news-sentiment
        metrics:
          - type: accuracy
            value: 0.797
            name: Accuracy

financial-sentiment-distilbert

Model Description

DistilBERT-based financial sentiment analysis model trained on balanced dataset

This model is fine-tuned from distilbert-base-uncased for financial sentiment analysis, capable of classifying financial text into three categories:

  • Bearish (0): Negative financial sentiment
  • Neutral (1): Neutral financial sentiment
  • Bullish (2): Positive financial sentiment

Model Performance

  • Accuracy: 0.797
  • Dataset: Twitter Financial News Sentiment
  • Base Model: distilbert-base-uncased

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("codealchemist01/financial-sentiment-distilbert")
model = AutoModelForSequenceClassification.from_pretrained("codealchemist01/financial-sentiment-distilbert")

# Example usage
text = "Apple stock is showing strong growth potential"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)

with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(predictions, dim=-1).item()

# Labels: 0=Bearish, 1=Neutral, 2=Bullish
labels = ["Bearish", "Neutral", "Bullish"]
print(f"Prediction: {labels[predicted_class]}")

Training Details

  • Training Dataset: Twitter Financial News Sentiment
  • Training Framework: Transformers
  • Optimization: AdamW
  • Hardware: RTX GPU

Limitations

This model is specifically trained for financial sentiment analysis and may not perform well on general sentiment analysis tasks.

Citation

If you use this model, please cite:

@misc{financial-sentiment-distilbert,
  author = {CodeAlchemist01},
  title = {financial-sentiment-distilbert},
  year = {2024},
  publisher = {Hugging Face},
  url = {https://huggingface.co/codealchemist01/financial-sentiment-distilbert}
}