SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| forward |
|
| right |
|
| left |
|
| backward |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("cahlen/setfit-navigation-instructions")
# Run inference
preds = model("Move to the right")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 5.0 | 12 |
| Label | Training Sample Count |
|---|---|
| right | 22 |
| left | 21 |
| forward | 11 |
| backward | 13 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0024 | 1 | 0.1239 | - |
| 0.1220 | 50 | 0.1257 | - |
| 0.2439 | 100 | 0.0215 | - |
| 0.3659 | 150 | 0.0047 | - |
| 0.4878 | 200 | 0.0025 | - |
| 0.6098 | 250 | 0.0017 | - |
| 0.7317 | 300 | 0.0014 | - |
| 0.8537 | 350 | 0.0011 | - |
| 0.9756 | 400 | 0.0013 | - |
| 1.0 | 410 | - | 0.0182 |
| 1.0976 | 450 | 0.0009 | - |
| 1.2195 | 500 | 0.0008 | - |
| 1.3415 | 550 | 0.0007 | - |
| 1.4634 | 600 | 0.0007 | - |
| 1.5854 | 650 | 0.0006 | - |
| 1.7073 | 700 | 0.0007 | - |
| 1.8293 | 750 | 0.0006 | - |
| 1.9512 | 800 | 0.0006 | - |
| 2.0 | 820 | - | 0.0227 |
| 2.0732 | 850 | 0.0005 | - |
| 2.1951 | 900 | 0.0005 | - |
| 2.3171 | 950 | 0.0006 | - |
| 2.4390 | 1000 | 0.0005 | - |
| 2.5610 | 1050 | 0.0006 | - |
| 2.6829 | 1100 | 0.0005 | - |
| 2.8049 | 1150 | 0.0005 | - |
| 2.9268 | 1200 | 0.0004 | - |
| 3.0 | 1230 | - | 0.0236 |
| 3.0488 | 1250 | 0.0004 | - |
| 3.1707 | 1300 | 0.0004 | - |
| 3.2927 | 1350 | 0.0004 | - |
| 3.4146 | 1400 | 0.0005 | - |
| 3.5366 | 1450 | 0.0004 | - |
| 3.6585 | 1500 | 0.0004 | - |
| 3.7805 | 1550 | 0.0004 | - |
| 3.9024 | 1600 | 0.0004 | - |
| 4.0 | 1640 | - | 0.0240 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.8.0.dev20250331+cu128
- Datasets: 3.5.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- -