SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models
Paper
•
2412.07755
•
Published
•
2
A strong spatial Qwen 2.5 VL baseline.
Post-trained on SAT, and just the answers from Video-R1. The exact mix is 60% SAT, 40% Video-R1.
% pip install git+https://github.com/huggingface/transformers accelerate
% pip install qwen-vl-utils[decord]==0.0.8
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("array/Qwen2.5-VL-SAT")
processor = AutoProcessor.from_pretrained(
exp_confs["model_path"],
trust_remote_code=model_config.trust_remote_code
)
Please see the paper for details on training and evaluation datasets and metrics.
| Model | MV | RelDep | SpRel | Jig | IQT | BLINK Avg | BLINK Reas | SAT-R | VSI Avg | VSI Reas | ERQA | Avg (All) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Qwen2.5-VL (7B) | 39.00 | 61.29 | 92.38 | 58.66 | 25.33 | 55.33 | 41.00 | 59.00 | 23.96 | 22.96 | 38.91 | 44.30 |
| + SAT | 57.14 | 87.09 | 74.12 | 58.66 | 30.00 | 61.40 | 48.60 | 71.66 | 32.40 | 30.65 | 38.00 | 50.87 |
@misc{ray2025satdynamicspatialaptitude,
title={SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models},
author={Arijit Ray and Jiafei Duan and Ellis Brown and Reuben Tan and Dina Bashkirova and Rose Hendrix and Kiana Ehsani and Aniruddha Kembhavi and Bryan A. Plummer and Ranjay Krishna and Kuo-Hao Zeng and Kate Saenko},
year={2025},
eprint={2412.07755},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.07755},
}
Base model
Qwen/Qwen2.5-VL-7B-Instruct