bert-finetuned-claim-detection

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2241
  • Accuracy: 0.9135
  • F1: 0.9138

Model description

This model is a fine-tuned version of bert-base-uncased on the Claim Detection dataset (Nithiwat/claim-detection).

The goal of this model is to classify whether a given sentence is a check-worthy claim or not.
It is trained as a binary text classification task using the Hugging Face Trainer API.

Intended uses & limitations

This model is designed for text-level claim detection, with potential applications in:

  • βœ… Insurance claim screening
  • βœ… Fraud detection and compliance document filtering
  • βœ… Fact-checking or misinformation detection
  • βœ… News or policy statement classification

Limitations

  • Trained only on English-language data
  • Detects checkworthiness, not truthfulness β€” the model identifies statements that can be fact-checked, not whether they are true
  • May require fine-tuning for domain-specific text (e.g., legal, financial)

Training and evaluation data

Training and evaluation were conducted using the Hugging Face Trainer class with custom metric computation (Accuracy and F1-score).
The model was fine-tuned on 11,000 training samples and evaluated on the full test split.

Example Usage

from transformers import pipeline

pipe = pipeline("text-classification", model="EllenLiu/bert-finetuned-claim-detection")

text = "The new policy will save the government $20 billion annually."
print(pipe(text))
# Output: [{'label': 'LABEL_1', 'score': 0.987}]

Interpretation:

  • LABEL_1: Claim (check-worthy statement)
  • LABEL_0: Non-claim (non-factual or subjective statement)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7193 0.0727 50 0.6618 0.5366 0.6830
0.5819 0.1453 100 0.4477 0.8360 0.8298
0.4376 0.2180 150 0.3658 0.8695 0.8642
0.3847 0.2907 200 0.3159 0.8790 0.8826
0.2957 0.3634 250 0.3077 0.8800 0.8719
0.2932 0.4360 300 0.2654 0.8947 0.8948
0.2577 0.5087 350 0.2917 0.8936 0.8879
0.3273 0.5814 400 0.2663 0.8936 0.8925
0.2356 0.6541 450 0.2463 0.9012 0.9038
0.2833 0.7267 500 0.2619 0.8896 0.8951
0.2853 0.7994 550 0.2292 0.9067 0.9074
0.2386 0.8721 600 0.2370 0.9069 0.9063
0.2411 0.9448 650 0.2403 0.9094 0.9087
0.2377 1.0174 700 0.2264 0.9075 0.9076
0.1773 1.0901 750 0.2280 0.9073 0.9057
0.1827 1.1628 800 0.2233 0.9057 0.9084
0.205 1.2355 850 0.2153 0.9087 0.9109
0.1642 1.3081 900 0.2355 0.9109 0.9099
0.1446 1.3808 950 0.2308 0.9075 0.9084
0.1588 1.4535 1000 0.2153 0.9115 0.9113
0.1413 1.5262 1050 0.2243 0.9127 0.9129
0.172 1.5988 1100 0.2274 0.9082 0.9102
0.1419 1.6715 1150 0.2227 0.9112 0.9123
0.1669 1.7442 1200 0.2244 0.9141 0.9140
0.138 1.8169 1250 0.2242 0.9145 0.9143
0.1518 1.8895 1300 0.2241 0.9134 0.9139
0.1246 1.9622 1350 0.2241 0.9135 0.9138

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1

Author

  • πŸ’Ό Focus: AI model fine-tuning, deployment, and financial systems integration
  • πŸ”— LinkedIn | GitHub

Citation

@misc{ellenliu2025claimdetection,
  title={BERT-base Uncased Fine-tuned for Claim Detection},
  author={Xiaojing-Ellen-Liu},
  year={2025},
  howpublished={\url{https://huggingface.co/XiaojingEllen/bert-finetuned-claim-detection}},
}
Downloads last month
331
Safetensors
Model size
0.1B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for XiaojingEllen/bert-finetuned-claim-detection

Finetuned
(5922)
this model