Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +534 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
    	
        1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 384,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": false,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": true,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            +
              "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            +
              "pooling_mode_lasttoken": false,
         | 
| 9 | 
            +
              "include_prompt": true
         | 
| 10 | 
            +
            }
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,534 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            base_model: thenlper/gte-small
         | 
| 3 | 
            +
            datasets:
         | 
| 4 | 
            +
            - sentence-transformers/all-nli
         | 
| 5 | 
            +
            language:
         | 
| 6 | 
            +
            - en
         | 
| 7 | 
            +
            library_name: sentence-transformers
         | 
| 8 | 
            +
            license: apache-2.0
         | 
| 9 | 
            +
            metrics:
         | 
| 10 | 
            +
            - cosine_accuracy
         | 
| 11 | 
            +
            - dot_accuracy
         | 
| 12 | 
            +
            - manhattan_accuracy
         | 
| 13 | 
            +
            - euclidean_accuracy
         | 
| 14 | 
            +
            - max_accuracy
         | 
| 15 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 16 | 
            +
            tags:
         | 
| 17 | 
            +
            - sentence-transformers
         | 
| 18 | 
            +
            - sentence-similarity
         | 
| 19 | 
            +
            - feature-extraction
         | 
| 20 | 
            +
            - generated_from_trainer
         | 
| 21 | 
            +
            - dataset_size:100000
         | 
| 22 | 
            +
            - loss:MultipleNegativesRankingLoss
         | 
| 23 | 
            +
            widget:
         | 
| 24 | 
            +
            - source_sentence: A man is jumping unto his filthy bed.
         | 
| 25 | 
            +
              sentences:
         | 
| 26 | 
            +
              - A young male is looking at a newspaper while 2 females walks past him.
         | 
| 27 | 
            +
              - The bed is dirty.
         | 
| 28 | 
            +
              - The man is on the moon.
         | 
| 29 | 
            +
            - source_sentence: A carefully balanced male stands on one foot near a clean ocean
         | 
| 30 | 
            +
                beach area.
         | 
| 31 | 
            +
              sentences:
         | 
| 32 | 
            +
              - A man is ouside near the beach.
         | 
| 33 | 
            +
              - Three policemen patrol the streets on bikes
         | 
| 34 | 
            +
              - A man is sitting on his couch.
         | 
| 35 | 
            +
            - source_sentence: The man is wearing a blue shirt.
         | 
| 36 | 
            +
              sentences:
         | 
| 37 | 
            +
              - Near the trashcan the man stood and smoked
         | 
| 38 | 
            +
              - A man in a blue shirt leans on a wall beside a road with a blue van and red car
         | 
| 39 | 
            +
                with water in the background.
         | 
| 40 | 
            +
              - A man in a black shirt is playing a guitar.
         | 
| 41 | 
            +
            - source_sentence: The girls are outdoors.
         | 
| 42 | 
            +
              sentences:
         | 
| 43 | 
            +
              - Two girls riding on an amusement part ride.
         | 
| 44 | 
            +
              - a guy laughs while doing laundry
         | 
| 45 | 
            +
              - Three girls are standing together in a room, one is listening, one is writing
         | 
| 46 | 
            +
                on a wall and the third is talking to them.
         | 
| 47 | 
            +
            - source_sentence: A construction worker peeking out of a manhole while his coworker
         | 
| 48 | 
            +
                sits on the sidewalk smiling.
         | 
| 49 | 
            +
              sentences:
         | 
| 50 | 
            +
              - A worker is looking out of a manhole.
         | 
| 51 | 
            +
              - A man is giving a presentation.
         | 
| 52 | 
            +
              - The workers are both inside the manhole.
         | 
| 53 | 
            +
            model-index:
         | 
| 54 | 
            +
            - name: gte small finetuned on NLI
         | 
| 55 | 
            +
              results:
         | 
| 56 | 
            +
              - task:
         | 
| 57 | 
            +
                  type: triplet
         | 
| 58 | 
            +
                  name: Triplet
         | 
| 59 | 
            +
                dataset:
         | 
| 60 | 
            +
                  name: all nli dev
         | 
| 61 | 
            +
                  type: all-nli-dev
         | 
| 62 | 
            +
                metrics:
         | 
| 63 | 
            +
                - type: cosine_accuracy
         | 
| 64 | 
            +
                  value: 0.9260328068043743
         | 
| 65 | 
            +
                  name: Cosine Accuracy
         | 
| 66 | 
            +
                - type: dot_accuracy
         | 
| 67 | 
            +
                  value: 0.07396719319562577
         | 
| 68 | 
            +
                  name: Dot Accuracy
         | 
| 69 | 
            +
                - type: manhattan_accuracy
         | 
| 70 | 
            +
                  value: 0.925273390036452
         | 
| 71 | 
            +
                  name: Manhattan Accuracy
         | 
| 72 | 
            +
                - type: euclidean_accuracy
         | 
| 73 | 
            +
                  value: 0.9260328068043743
         | 
| 74 | 
            +
                  name: Euclidean Accuracy
         | 
| 75 | 
            +
                - type: max_accuracy
         | 
| 76 | 
            +
                  value: 0.9260328068043743
         | 
| 77 | 
            +
                  name: Max Accuracy
         | 
| 78 | 
            +
              - task:
         | 
| 79 | 
            +
                  type: triplet
         | 
| 80 | 
            +
                  name: Triplet
         | 
| 81 | 
            +
                dataset:
         | 
| 82 | 
            +
                  name: all nli test
         | 
| 83 | 
            +
                  type: all-nli-test
         | 
| 84 | 
            +
                metrics:
         | 
| 85 | 
            +
                - type: cosine_accuracy
         | 
| 86 | 
            +
                  value: 0.9347858980178544
         | 
| 87 | 
            +
                  name: Cosine Accuracy
         | 
| 88 | 
            +
                - type: dot_accuracy
         | 
| 89 | 
            +
                  value: 0.06521410198214556
         | 
| 90 | 
            +
                  name: Dot Accuracy
         | 
| 91 | 
            +
                - type: manhattan_accuracy
         | 
| 92 | 
            +
                  value: 0.9331215009835073
         | 
| 93 | 
            +
                  name: Manhattan Accuracy
         | 
| 94 | 
            +
                - type: euclidean_accuracy
         | 
| 95 | 
            +
                  value: 0.9347858980178544
         | 
| 96 | 
            +
                  name: Euclidean Accuracy
         | 
| 97 | 
            +
                - type: max_accuracy
         | 
| 98 | 
            +
                  value: 0.9347858980178544
         | 
| 99 | 
            +
                  name: Max Accuracy
         | 
| 100 | 
            +
            ---
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            # gte small finetuned on NLI
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            ## Model Details
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            ### Model Description
         | 
| 109 | 
            +
            - **Model Type:** Sentence Transformer
         | 
| 110 | 
            +
            - **Base model:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) <!-- at revision 50c7dd33df1027ef560fd504d95e277948c3c886 -->
         | 
| 111 | 
            +
            - **Maximum Sequence Length:** 512 tokens
         | 
| 112 | 
            +
            - **Output Dimensionality:** 384 tokens
         | 
| 113 | 
            +
            - **Similarity Function:** Cosine Similarity
         | 
| 114 | 
            +
            - **Training Dataset:**
         | 
| 115 | 
            +
                - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
         | 
| 116 | 
            +
            - **Language:** en
         | 
| 117 | 
            +
            - **License:** apache-2.0
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            ### Model Sources
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
         | 
| 122 | 
            +
            - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
         | 
| 123 | 
            +
            - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            ### Full Model Architecture
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ```
         | 
| 128 | 
            +
            SentenceTransformer(
         | 
| 129 | 
            +
              (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
         | 
| 130 | 
            +
              (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
         | 
| 131 | 
            +
              (2): Normalize()
         | 
| 132 | 
            +
            )
         | 
| 133 | 
            +
            ```
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            ## Usage
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            ### Direct Usage (Sentence Transformers)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            First install the Sentence Transformers library:
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            ```bash
         | 
| 142 | 
            +
            pip install -U sentence-transformers
         | 
| 143 | 
            +
            ```
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            Then you can load this model and run inference.
         | 
| 146 | 
            +
            ```python
         | 
| 147 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            # Download from the 🤗 Hub
         | 
| 150 | 
            +
            model = SentenceTransformer("SMARTICT/gte-small-finetune-test")
         | 
| 151 | 
            +
            # Run inference
         | 
| 152 | 
            +
            sentences = [
         | 
| 153 | 
            +
                'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
         | 
| 154 | 
            +
                'A worker is looking out of a manhole.',
         | 
| 155 | 
            +
                'The workers are both inside the manhole.',
         | 
| 156 | 
            +
            ]
         | 
| 157 | 
            +
            embeddings = model.encode(sentences)
         | 
| 158 | 
            +
            print(embeddings.shape)
         | 
| 159 | 
            +
            # [3, 384]
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            # Get the similarity scores for the embeddings
         | 
| 162 | 
            +
            similarities = model.similarity(embeddings, embeddings)
         | 
| 163 | 
            +
            print(similarities.shape)
         | 
| 164 | 
            +
            # [3, 3]
         | 
| 165 | 
            +
            ```
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            <!--
         | 
| 168 | 
            +
            ### Direct Usage (Transformers)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
            <details><summary>Click to see the direct usage in Transformers</summary>
         | 
| 171 | 
            +
             | 
| 172 | 
            +
            </details>
         | 
| 173 | 
            +
            -->
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            <!--
         | 
| 176 | 
            +
            ### Downstream Usage (Sentence Transformers)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            You can finetune this model on your own dataset.
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            </details>
         | 
| 183 | 
            +
            -->
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            <!--
         | 
| 186 | 
            +
            ### Out-of-Scope Use
         | 
| 187 | 
            +
             | 
| 188 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 189 | 
            +
            -->
         | 
| 190 | 
            +
             | 
| 191 | 
            +
            ## Evaluation
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            ### Metrics
         | 
| 194 | 
            +
             | 
| 195 | 
            +
            #### Triplet
         | 
| 196 | 
            +
            * Dataset: `all-nli-dev`
         | 
| 197 | 
            +
            * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            | Metric             | Value     |
         | 
| 200 | 
            +
            |:-------------------|:----------|
         | 
| 201 | 
            +
            | cosine_accuracy    | 0.926     |
         | 
| 202 | 
            +
            | dot_accuracy       | 0.074     |
         | 
| 203 | 
            +
            | manhattan_accuracy | 0.9253    |
         | 
| 204 | 
            +
            | euclidean_accuracy | 0.926     |
         | 
| 205 | 
            +
            | **max_accuracy**   | **0.926** |
         | 
| 206 | 
            +
             | 
| 207 | 
            +
            #### Triplet
         | 
| 208 | 
            +
            * Dataset: `all-nli-test`
         | 
| 209 | 
            +
            * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
            | Metric             | Value      |
         | 
| 212 | 
            +
            |:-------------------|:-----------|
         | 
| 213 | 
            +
            | cosine_accuracy    | 0.9348     |
         | 
| 214 | 
            +
            | dot_accuracy       | 0.0652     |
         | 
| 215 | 
            +
            | manhattan_accuracy | 0.9331     |
         | 
| 216 | 
            +
            | euclidean_accuracy | 0.9348     |
         | 
| 217 | 
            +
            | **max_accuracy**   | **0.9348** |
         | 
| 218 | 
            +
             | 
| 219 | 
            +
            <!--
         | 
| 220 | 
            +
            ## Bias, Risks and Limitations
         | 
| 221 | 
            +
             | 
| 222 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 223 | 
            +
            -->
         | 
| 224 | 
            +
             | 
| 225 | 
            +
            <!--
         | 
| 226 | 
            +
            ### Recommendations
         | 
| 227 | 
            +
             | 
| 228 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 229 | 
            +
            -->
         | 
| 230 | 
            +
             | 
| 231 | 
            +
            ## Training Details
         | 
| 232 | 
            +
             | 
| 233 | 
            +
            ### Training Dataset
         | 
| 234 | 
            +
             | 
| 235 | 
            +
            #### sentence-transformers/all-nli
         | 
| 236 | 
            +
             | 
| 237 | 
            +
            * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
         | 
| 238 | 
            +
            * Size: 100,000 training samples
         | 
| 239 | 
            +
            * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
         | 
| 240 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 241 | 
            +
              |         | anchor                                                                            | positive                                                                          | negative                                                                         |
         | 
| 242 | 
            +
              |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
         | 
| 243 | 
            +
              | type    | string                                                                            | string                                                                            | string                                                                           |
         | 
| 244 | 
            +
              | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
         | 
| 245 | 
            +
            * Samples:
         | 
| 246 | 
            +
              | anchor                                                                     | positive                                         | negative                                                   |
         | 
| 247 | 
            +
              |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
         | 
| 248 | 
            +
              | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
         | 
| 249 | 
            +
              | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
         | 
| 250 | 
            +
              | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
         | 
| 251 | 
            +
            * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
         | 
| 252 | 
            +
              ```json
         | 
| 253 | 
            +
              {
         | 
| 254 | 
            +
                  "scale": 20.0,
         | 
| 255 | 
            +
                  "similarity_fct": "cos_sim"
         | 
| 256 | 
            +
              }
         | 
| 257 | 
            +
              ```
         | 
| 258 | 
            +
             | 
| 259 | 
            +
            ### Evaluation Dataset
         | 
| 260 | 
            +
             | 
| 261 | 
            +
            #### sentence-transformers/all-nli
         | 
| 262 | 
            +
             | 
| 263 | 
            +
            * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
         | 
| 264 | 
            +
            * Size: 6,584 evaluation samples
         | 
| 265 | 
            +
            * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
         | 
| 266 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 267 | 
            +
              |         | anchor                                                                            | positive                                                                         | negative                                                                          |
         | 
| 268 | 
            +
              |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
         | 
| 269 | 
            +
              | type    | string                                                                            | string                                                                           | string                                                                            |
         | 
| 270 | 
            +
              | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
         | 
| 271 | 
            +
            * Samples:
         | 
| 272 | 
            +
              | anchor                                                                                                                                                                         | positive                                                    | negative                                                |
         | 
| 273 | 
            +
              |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
         | 
| 274 | 
            +
              | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                | <code>The men are fighting outside a deli.</code>       |
         | 
| 275 | 
            +
              | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code>        |
         | 
| 276 | 
            +
              | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>A man selling donuts to a customer.</code>            | <code>A woman drinks her coffee in a small cafe.</code> |
         | 
| 277 | 
            +
            * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
         | 
| 278 | 
            +
              ```json
         | 
| 279 | 
            +
              {
         | 
| 280 | 
            +
                  "scale": 20.0,
         | 
| 281 | 
            +
                  "similarity_fct": "cos_sim"
         | 
| 282 | 
            +
              }
         | 
| 283 | 
            +
              ```
         | 
| 284 | 
            +
             | 
| 285 | 
            +
            ### Training Hyperparameters
         | 
| 286 | 
            +
            #### Non-Default Hyperparameters
         | 
| 287 | 
            +
             | 
| 288 | 
            +
            - `eval_strategy`: steps
         | 
| 289 | 
            +
            - `per_device_train_batch_size`: 16
         | 
| 290 | 
            +
            - `per_device_eval_batch_size`: 16
         | 
| 291 | 
            +
            - `num_train_epochs`: 1
         | 
| 292 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 293 | 
            +
            - `bf16`: True
         | 
| 294 | 
            +
            - `batch_sampler`: no_duplicates
         | 
| 295 | 
            +
             | 
| 296 | 
            +
            #### All Hyperparameters
         | 
| 297 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 298 | 
            +
             | 
| 299 | 
            +
            - `overwrite_output_dir`: False
         | 
| 300 | 
            +
            - `do_predict`: False
         | 
| 301 | 
            +
            - `eval_strategy`: steps
         | 
| 302 | 
            +
            - `prediction_loss_only`: True
         | 
| 303 | 
            +
            - `per_device_train_batch_size`: 16
         | 
| 304 | 
            +
            - `per_device_eval_batch_size`: 16
         | 
| 305 | 
            +
            - `per_gpu_train_batch_size`: None
         | 
| 306 | 
            +
            - `per_gpu_eval_batch_size`: None
         | 
| 307 | 
            +
            - `gradient_accumulation_steps`: 1
         | 
| 308 | 
            +
            - `eval_accumulation_steps`: None
         | 
| 309 | 
            +
            - `learning_rate`: 5e-05
         | 
| 310 | 
            +
            - `weight_decay`: 0.0
         | 
| 311 | 
            +
            - `adam_beta1`: 0.9
         | 
| 312 | 
            +
            - `adam_beta2`: 0.999
         | 
| 313 | 
            +
            - `adam_epsilon`: 1e-08
         | 
| 314 | 
            +
            - `max_grad_norm`: 1.0
         | 
| 315 | 
            +
            - `num_train_epochs`: 1
         | 
| 316 | 
            +
            - `max_steps`: -1
         | 
| 317 | 
            +
            - `lr_scheduler_type`: linear
         | 
| 318 | 
            +
            - `lr_scheduler_kwargs`: {}
         | 
| 319 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 320 | 
            +
            - `warmup_steps`: 0
         | 
| 321 | 
            +
            - `log_level`: passive
         | 
| 322 | 
            +
            - `log_level_replica`: warning
         | 
| 323 | 
            +
            - `log_on_each_node`: True
         | 
| 324 | 
            +
            - `logging_nan_inf_filter`: True
         | 
| 325 | 
            +
            - `save_safetensors`: True
         | 
| 326 | 
            +
            - `save_on_each_node`: False
         | 
| 327 | 
            +
            - `save_only_model`: False
         | 
| 328 | 
            +
            - `restore_callback_states_from_checkpoint`: False
         | 
| 329 | 
            +
            - `no_cuda`: False
         | 
| 330 | 
            +
            - `use_cpu`: False
         | 
| 331 | 
            +
            - `use_mps_device`: False
         | 
| 332 | 
            +
            - `seed`: 42
         | 
| 333 | 
            +
            - `data_seed`: None
         | 
| 334 | 
            +
            - `jit_mode_eval`: False
         | 
| 335 | 
            +
            - `use_ipex`: False
         | 
| 336 | 
            +
            - `bf16`: True
         | 
| 337 | 
            +
            - `fp16`: False
         | 
| 338 | 
            +
            - `fp16_opt_level`: O1
         | 
| 339 | 
            +
            - `half_precision_backend`: auto
         | 
| 340 | 
            +
            - `bf16_full_eval`: False
         | 
| 341 | 
            +
            - `fp16_full_eval`: False
         | 
| 342 | 
            +
            - `tf32`: None
         | 
| 343 | 
            +
            - `local_rank`: 0
         | 
| 344 | 
            +
            - `ddp_backend`: None
         | 
| 345 | 
            +
            - `tpu_num_cores`: None
         | 
| 346 | 
            +
            - `tpu_metrics_debug`: False
         | 
| 347 | 
            +
            - `debug`: []
         | 
| 348 | 
            +
            - `dataloader_drop_last`: False
         | 
| 349 | 
            +
            - `dataloader_num_workers`: 0
         | 
| 350 | 
            +
            - `dataloader_prefetch_factor`: None
         | 
| 351 | 
            +
            - `past_index`: -1
         | 
| 352 | 
            +
            - `disable_tqdm`: False
         | 
| 353 | 
            +
            - `remove_unused_columns`: True
         | 
| 354 | 
            +
            - `label_names`: None
         | 
| 355 | 
            +
            - `load_best_model_at_end`: False
         | 
| 356 | 
            +
            - `ignore_data_skip`: False
         | 
| 357 | 
            +
            - `fsdp`: []
         | 
| 358 | 
            +
            - `fsdp_min_num_params`: 0
         | 
| 359 | 
            +
            - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
         | 
| 360 | 
            +
            - `fsdp_transformer_layer_cls_to_wrap`: None
         | 
| 361 | 
            +
            - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
         | 
| 362 | 
            +
            - `deepspeed`: None
         | 
| 363 | 
            +
            - `label_smoothing_factor`: 0.0
         | 
| 364 | 
            +
            - `optim`: adamw_torch
         | 
| 365 | 
            +
            - `optim_args`: None
         | 
| 366 | 
            +
            - `adafactor`: False
         | 
| 367 | 
            +
            - `group_by_length`: False
         | 
| 368 | 
            +
            - `length_column_name`: length
         | 
| 369 | 
            +
            - `ddp_find_unused_parameters`: None
         | 
| 370 | 
            +
            - `ddp_bucket_cap_mb`: None
         | 
| 371 | 
            +
            - `ddp_broadcast_buffers`: False
         | 
| 372 | 
            +
            - `dataloader_pin_memory`: True
         | 
| 373 | 
            +
            - `dataloader_persistent_workers`: False
         | 
| 374 | 
            +
            - `skip_memory_metrics`: True
         | 
| 375 | 
            +
            - `use_legacy_prediction_loop`: False
         | 
| 376 | 
            +
            - `push_to_hub`: False
         | 
| 377 | 
            +
            - `resume_from_checkpoint`: None
         | 
| 378 | 
            +
            - `hub_model_id`: None
         | 
| 379 | 
            +
            - `hub_strategy`: every_save
         | 
| 380 | 
            +
            - `hub_private_repo`: False
         | 
| 381 | 
            +
            - `hub_always_push`: False
         | 
| 382 | 
            +
            - `gradient_checkpointing`: False
         | 
| 383 | 
            +
            - `gradient_checkpointing_kwargs`: None
         | 
| 384 | 
            +
            - `include_inputs_for_metrics`: False
         | 
| 385 | 
            +
            - `eval_do_concat_batches`: True
         | 
| 386 | 
            +
            - `fp16_backend`: auto
         | 
| 387 | 
            +
            - `push_to_hub_model_id`: None
         | 
| 388 | 
            +
            - `push_to_hub_organization`: None
         | 
| 389 | 
            +
            - `mp_parameters`: 
         | 
| 390 | 
            +
            - `auto_find_batch_size`: False
         | 
| 391 | 
            +
            - `full_determinism`: False
         | 
| 392 | 
            +
            - `torchdynamo`: None
         | 
| 393 | 
            +
            - `ray_scope`: last
         | 
| 394 | 
            +
            - `ddp_timeout`: 1800
         | 
| 395 | 
            +
            - `torch_compile`: False
         | 
| 396 | 
            +
            - `torch_compile_backend`: None
         | 
| 397 | 
            +
            - `torch_compile_mode`: None
         | 
| 398 | 
            +
            - `dispatch_batches`: None
         | 
| 399 | 
            +
            - `split_batches`: None
         | 
| 400 | 
            +
            - `include_tokens_per_second`: False
         | 
| 401 | 
            +
            - `include_num_input_tokens_seen`: False
         | 
| 402 | 
            +
            - `neftune_noise_alpha`: None
         | 
| 403 | 
            +
            - `optim_target_modules`: None
         | 
| 404 | 
            +
            - `batch_eval_metrics`: False
         | 
| 405 | 
            +
            - `eval_on_start`: False
         | 
| 406 | 
            +
            - `batch_sampler`: no_duplicates
         | 
| 407 | 
            +
            - `multi_dataset_batch_sampler`: proportional
         | 
| 408 | 
            +
             | 
| 409 | 
            +
            </details>
         | 
| 410 | 
            +
             | 
| 411 | 
            +
            ### Training Logs
         | 
| 412 | 
            +
            | Epoch | Step | Training Loss | loss   | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
         | 
| 413 | 
            +
            |:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
         | 
| 414 | 
            +
            | 0     | 0    | -             | -      | 0.9160                   | -                         |
         | 
| 415 | 
            +
            | 0.016 | 100  | 1.4107        | 0.6660 | 0.9069                   | -                         |
         | 
| 416 | 
            +
            | 0.032 | 200  | 0.7368        | 0.6155 | 0.8950                   | -                         |
         | 
| 417 | 
            +
            | 0.048 | 300  | 1.0729        | 0.5522 | 0.9054                   | -                         |
         | 
| 418 | 
            +
            | 0.064 | 400  | 0.719         | 0.5647 | 0.8957                   | -                         |
         | 
| 419 | 
            +
            | 0.08  | 500  | 0.7273        | 0.6278 | 0.8829                   | -                         |
         | 
| 420 | 
            +
            | 0.096 | 600  | 0.9222        | 0.5652 | 0.8975                   | -                         |
         | 
| 421 | 
            +
            | 0.112 | 700  | 0.8402        | 0.5837 | 0.8947                   | -                         |
         | 
| 422 | 
            +
            | 0.128 | 800  | 0.9511        | 0.6110 | 0.8864                   | -                         |
         | 
| 423 | 
            +
            | 0.144 | 900  | 1.0713        | 0.5923 | 0.8852                   | -                         |
         | 
| 424 | 
            +
            | 0.16  | 1000 | 0.9495        | 0.5216 | 0.8888                   | -                         |
         | 
| 425 | 
            +
            | 0.176 | 1100 | 1.0079        | 0.6263 | 0.8777                   | -                         |
         | 
| 426 | 
            +
            | 0.192 | 1200 | 0.9195        | 0.5970 | 0.8777                   | -                         |
         | 
| 427 | 
            +
            | 0.208 | 1300 | 0.8018        | 0.6342 | 0.8765                   | -                         |
         | 
| 428 | 
            +
            | 0.224 | 1400 | 0.7124        | 0.6462 | 0.8764                   | -                         |
         | 
| 429 | 
            +
            | 0.24  | 1500 | 0.709         | 0.5232 | 0.8964                   | -                         |
         | 
| 430 | 
            +
            | 0.256 | 1600 | 0.6055        | 0.6109 | 0.8838                   | -                         |
         | 
| 431 | 
            +
            | 0.272 | 1700 | 0.7887        | 0.6620 | 0.8768                   | -                         |
         | 
| 432 | 
            +
            | 0.288 | 1800 | 0.789         | 0.5957 | 0.8829                   | -                         |
         | 
| 433 | 
            +
            | 0.304 | 1900 | 0.6711        | 0.5377 | 0.8946                   | -                         |
         | 
| 434 | 
            +
            | 0.32  | 2000 | 0.6086        | 0.5596 | 0.8932                   | -                         |
         | 
| 435 | 
            +
            | 0.336 | 2100 | 0.5067        | 0.5676 | 0.8861                   | -                         |
         | 
| 436 | 
            +
            | 0.352 | 2200 | 0.5387        | 0.5704 | 0.8900                   | -                         |
         | 
| 437 | 
            +
            | 0.368 | 2300 | 0.6574        | 0.5308 | 0.8890                   | -                         |
         | 
| 438 | 
            +
            | 0.384 | 2400 | 0.6232        | 0.5051 | 0.8928                   | -                         |
         | 
| 439 | 
            +
            | 0.4   | 2500 | 0.6045        | 0.5179 | 0.9023                   | -                         |
         | 
| 440 | 
            +
            | 0.416 | 2600 | 0.4795        | 0.4766 | 0.8960                   | -                         |
         | 
| 441 | 
            +
            | 0.432 | 2700 | 0.7372        | 0.5463 | 0.8979                   | -                         |
         | 
| 442 | 
            +
            | 0.448 | 2800 | 0.7593        | 0.5337 | 0.8878                   | -                         |
         | 
| 443 | 
            +
            | 0.464 | 2900 | 0.7384        | 0.5203 | 0.8923                   | -                         |
         | 
| 444 | 
            +
            | 0.48  | 3000 | 0.6336        | 0.5099 | 0.8897                   | -                         |
         | 
| 445 | 
            +
            | 0.496 | 3100 | 0.6634        | 0.4803 | 0.8954                   | -                         |
         | 
| 446 | 
            +
            | 0.512 | 3200 | 0.5443        | 0.4524 | 0.9048                   | -                         |
         | 
| 447 | 
            +
            | 0.528 | 3300 | 0.5292        | 0.4232 | 0.9104                   | -                         |
         | 
| 448 | 
            +
            | 0.544 | 3400 | 0.4633        | 0.4414 | 0.9093                   | -                         |
         | 
| 449 | 
            +
            | 0.56  | 3500 | 0.4442        | 0.4393 | 0.9087                   | -                         |
         | 
| 450 | 
            +
            | 0.576 | 3600 | 0.4443        | 0.4178 | 0.9128                   | -                         |
         | 
| 451 | 
            +
            | 0.592 | 3700 | 0.4736        | 0.4123 | 0.9134                   | -                         |
         | 
| 452 | 
            +
            | 0.608 | 3800 | 0.4077        | 0.4025 | 0.9174                   | -                         |
         | 
| 453 | 
            +
            | 0.624 | 3900 | 0.4069        | 0.4032 | 0.9156                   | -                         |
         | 
| 454 | 
            +
            | 0.64  | 4000 | 0.6939        | 0.4353 | 0.9146                   | -                         |
         | 
| 455 | 
            +
            | 0.656 | 4100 | 0.865         | 0.4154 | 0.9172                   | -                         |
         | 
| 456 | 
            +
            | 0.672 | 4200 | 0.8518        | 0.3925 | 0.9172                   | -                         |
         | 
| 457 | 
            +
            | 0.688 | 4300 | 0.5989        | 0.3864 | 0.9190                   | -                         |
         | 
| 458 | 
            +
            | 0.704 | 4400 | 0.5399        | 0.3679 | 0.9197                   | -                         |
         | 
| 459 | 
            +
            | 0.72  | 4500 | 0.497         | 0.3766 | 0.9221                   | -                         |
         | 
| 460 | 
            +
            | 0.736 | 4600 | 0.585         | 0.3708 | 0.9228                   | -                         |
         | 
| 461 | 
            +
            | 0.752 | 4700 | 0.6454        | 0.3608 | 0.9203                   | -                         |
         | 
| 462 | 
            +
            | 0.768 | 4800 | 0.5414        | 0.3593 | 0.9213                   | -                         |
         | 
| 463 | 
            +
            | 0.784 | 4900 | 0.4648        | 0.3634 | 0.9210                   | -                         |
         | 
| 464 | 
            +
            | 0.8   | 5000 | 0.5781        | 0.3782 | 0.9216                   | -                         |
         | 
| 465 | 
            +
            | 0.816 | 5100 | 0.4401        | 0.3662 | 0.9227                   | -                         |
         | 
| 466 | 
            +
            | 0.832 | 5200 | 0.5241        | 0.3595 | 0.9215                   | -                         |
         | 
| 467 | 
            +
            | 0.848 | 5300 | 0.459         | 0.3618 | 0.9215                   | -                         |
         | 
| 468 | 
            +
            | 0.864 | 5400 | 0.5529        | 0.3693 | 0.9216                   | -                         |
         | 
| 469 | 
            +
            | 0.88  | 5500 | 0.5202        | 0.3573 | 0.9218                   | -                         |
         | 
| 470 | 
            +
            | 0.896 | 5600 | 0.4703        | 0.3529 | 0.9231                   | -                         |
         | 
| 471 | 
            +
            | 0.912 | 5700 | 0.5658        | 0.3513 | 0.9245                   | -                         |
         | 
| 472 | 
            +
            | 0.928 | 5800 | 0.5016        | 0.3491 | 0.9236                   | -                         |
         | 
| 473 | 
            +
            | 0.944 | 5900 | 0.6306        | 0.3492 | 0.9257                   | -                         |
         | 
| 474 | 
            +
            | 0.96  | 6000 | 0.6721        | 0.3507 | 0.9266                   | -                         |
         | 
| 475 | 
            +
            | 0.976 | 6100 | 0.586         | 0.3509 | 0.9257                   | -                         |
         | 
| 476 | 
            +
            | 0.992 | 6200 | 0.0014        | 0.3511 | 0.9260                   | -                         |
         | 
| 477 | 
            +
            | 1.0   | 6250 | -             | -      | -                        | 0.9348                    |
         | 
| 478 | 
            +
             | 
| 479 | 
            +
             | 
| 480 | 
            +
            ### Framework Versions
         | 
| 481 | 
            +
            - Python: 3.10.12
         | 
| 482 | 
            +
            - Sentence Transformers: 3.0.1
         | 
| 483 | 
            +
            - Transformers: 4.42.4
         | 
| 484 | 
            +
            - PyTorch: 2.4.0+cu121
         | 
| 485 | 
            +
            - Accelerate: 0.32.1
         | 
| 486 | 
            +
            - Datasets: 2.21.0
         | 
| 487 | 
            +
            - Tokenizers: 0.19.1
         | 
| 488 | 
            +
             | 
| 489 | 
            +
            ## Citation
         | 
| 490 | 
            +
             | 
| 491 | 
            +
            ### BibTeX
         | 
| 492 | 
            +
             | 
| 493 | 
            +
            #### Sentence Transformers
         | 
| 494 | 
            +
            ```bibtex
         | 
| 495 | 
            +
            @inproceedings{reimers-2019-sentence-bert,
         | 
| 496 | 
            +
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         | 
| 497 | 
            +
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 498 | 
            +
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         | 
| 499 | 
            +
                month = "11",
         | 
| 500 | 
            +
                year = "2019",
         | 
| 501 | 
            +
                publisher = "Association for Computational Linguistics",
         | 
| 502 | 
            +
                url = "https://arxiv.org/abs/1908.10084",
         | 
| 503 | 
            +
            }
         | 
| 504 | 
            +
            ```
         | 
| 505 | 
            +
             | 
| 506 | 
            +
            #### MultipleNegativesRankingLoss
         | 
| 507 | 
            +
            ```bibtex
         | 
| 508 | 
            +
            @misc{henderson2017efficient,
         | 
| 509 | 
            +
                title={Efficient Natural Language Response Suggestion for Smart Reply}, 
         | 
| 510 | 
            +
                author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
         | 
| 511 | 
            +
                year={2017},
         | 
| 512 | 
            +
                eprint={1705.00652},
         | 
| 513 | 
            +
                archivePrefix={arXiv},
         | 
| 514 | 
            +
                primaryClass={cs.CL}
         | 
| 515 | 
            +
            }
         | 
| 516 | 
            +
            ```
         | 
| 517 | 
            +
             | 
| 518 | 
            +
            <!--
         | 
| 519 | 
            +
            ## Glossary
         | 
| 520 | 
            +
             | 
| 521 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 522 | 
            +
            -->
         | 
| 523 | 
            +
             | 
| 524 | 
            +
            <!--
         | 
| 525 | 
            +
            ## Model Card Authors
         | 
| 526 | 
            +
             | 
| 527 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 528 | 
            +
            -->
         | 
| 529 | 
            +
             | 
| 530 | 
            +
            <!--
         | 
| 531 | 
            +
            ## Model Card Contact
         | 
| 532 | 
            +
             | 
| 533 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 534 | 
            +
            -->
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,25 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "thenlper/gte-small",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "BertModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 7 | 
            +
              "classifier_dropout": null,
         | 
| 8 | 
            +
              "hidden_act": "gelu",
         | 
| 9 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 10 | 
            +
              "hidden_size": 384,
         | 
| 11 | 
            +
              "initializer_range": 0.02,
         | 
| 12 | 
            +
              "intermediate_size": 1536,
         | 
| 13 | 
            +
              "layer_norm_eps": 1e-12,
         | 
| 14 | 
            +
              "max_position_embeddings": 512,
         | 
| 15 | 
            +
              "model_type": "bert",
         | 
| 16 | 
            +
              "num_attention_heads": 12,
         | 
| 17 | 
            +
              "num_hidden_layers": 12,
         | 
| 18 | 
            +
              "pad_token_id": 0,
         | 
| 19 | 
            +
              "position_embedding_type": "absolute",
         | 
| 20 | 
            +
              "torch_dtype": "float32",
         | 
| 21 | 
            +
              "transformers_version": "4.42.4",
         | 
| 22 | 
            +
              "type_vocab_size": 2,
         | 
| 23 | 
            +
              "use_cache": true,
         | 
| 24 | 
            +
              "vocab_size": 30522
         | 
| 25 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "3.0.1",
         | 
| 4 | 
            +
                "transformers": "4.42.4",
         | 
| 5 | 
            +
                "pytorch": "2.4.0+cu121"
         | 
| 6 | 
            +
              },
         | 
| 7 | 
            +
              "prompts": {},
         | 
| 8 | 
            +
              "default_prompt_name": null,
         | 
| 9 | 
            +
              "similarity_fn_name": null
         | 
| 10 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2ad3c54e6a07390da90f6d75d0c5fd0c59884b04ea713b1d14cd70267703346c
         | 
| 3 | 
            +
            size 133462128
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,20 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              },
         | 
| 14 | 
            +
              {
         | 
| 15 | 
            +
                "idx": 2,
         | 
| 16 | 
            +
                "name": "2",
         | 
| 17 | 
            +
                "path": "2_Normalize",
         | 
| 18 | 
            +
                "type": "sentence_transformers.models.Normalize"
         | 
| 19 | 
            +
              }
         | 
| 20 | 
            +
            ]
         | 
    	
        sentence_bert_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_seq_length": 512,
         | 
| 3 | 
            +
              "do_lower_case": false
         | 
| 4 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "cls_token": {
         | 
| 3 | 
            +
                "content": "[CLS]",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "mask_token": {
         | 
| 10 | 
            +
                "content": "[MASK]",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "pad_token": {
         | 
| 17 | 
            +
                "content": "[PAD]",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "sep_token": {
         | 
| 24 | 
            +
                "content": "[SEP]",
         | 
| 25 | 
            +
                "lstrip": false,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              },
         | 
| 30 | 
            +
              "unk_token": {
         | 
| 31 | 
            +
                "content": "[UNK]",
         | 
| 32 | 
            +
                "lstrip": false,
         | 
| 33 | 
            +
                "normalized": false,
         | 
| 34 | 
            +
                "rstrip": false,
         | 
| 35 | 
            +
                "single_word": false
         | 
| 36 | 
            +
              }
         | 
| 37 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,64 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "[PAD]",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "100": {
         | 
| 12 | 
            +
                  "content": "[UNK]",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "101": {
         | 
| 20 | 
            +
                  "content": "[CLS]",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "102": {
         | 
| 28 | 
            +
                  "content": "[SEP]",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "103": {
         | 
| 36 | 
            +
                  "content": "[MASK]",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                }
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 45 | 
            +
              "cls_token": "[CLS]",
         | 
| 46 | 
            +
              "do_basic_tokenize": true,
         | 
| 47 | 
            +
              "do_lower_case": true,
         | 
| 48 | 
            +
              "mask_token": "[MASK]",
         | 
| 49 | 
            +
              "max_length": 128,
         | 
| 50 | 
            +
              "model_max_length": 512,
         | 
| 51 | 
            +
              "never_split": null,
         | 
| 52 | 
            +
              "pad_to_multiple_of": null,
         | 
| 53 | 
            +
              "pad_token": "[PAD]",
         | 
| 54 | 
            +
              "pad_token_type_id": 0,
         | 
| 55 | 
            +
              "padding_side": "right",
         | 
| 56 | 
            +
              "sep_token": "[SEP]",
         | 
| 57 | 
            +
              "stride": 0,
         | 
| 58 | 
            +
              "strip_accents": null,
         | 
| 59 | 
            +
              "tokenize_chinese_chars": true,
         | 
| 60 | 
            +
              "tokenizer_class": "BertTokenizer",
         | 
| 61 | 
            +
              "truncation_side": "right",
         | 
| 62 | 
            +
              "truncation_strategy": "longest_first",
         | 
| 63 | 
            +
              "unk_token": "[UNK]"
         | 
| 64 | 
            +
            }
         | 
    	
        vocab.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
