gte small finetuned on NLI
This is a sentence-transformers model finetuned from thenlper/gte-small on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SMARTICT/gte-small-finetune-test")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.926 |
| dot_accuracy | 0.074 |
| manhattan_accuracy | 0.9253 |
| euclidean_accuracy | 0.926 |
| max_accuracy | 0.926 |
Triplet
- Dataset:
all-nli-test - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9348 |
| dot_accuracy | 0.0652 |
| manhattan_accuracy | 0.9331 |
| euclidean_accuracy | 0.9348 |
| max_accuracy | 0.9348 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1warmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.9160 | - |
| 0.016 | 100 | 1.4107 | 0.6660 | 0.9069 | - |
| 0.032 | 200 | 0.7368 | 0.6155 | 0.8950 | - |
| 0.048 | 300 | 1.0729 | 0.5522 | 0.9054 | - |
| 0.064 | 400 | 0.719 | 0.5647 | 0.8957 | - |
| 0.08 | 500 | 0.7273 | 0.6278 | 0.8829 | - |
| 0.096 | 600 | 0.9222 | 0.5652 | 0.8975 | - |
| 0.112 | 700 | 0.8402 | 0.5837 | 0.8947 | - |
| 0.128 | 800 | 0.9511 | 0.6110 | 0.8864 | - |
| 0.144 | 900 | 1.0713 | 0.5923 | 0.8852 | - |
| 0.16 | 1000 | 0.9495 | 0.5216 | 0.8888 | - |
| 0.176 | 1100 | 1.0079 | 0.6263 | 0.8777 | - |
| 0.192 | 1200 | 0.9195 | 0.5970 | 0.8777 | - |
| 0.208 | 1300 | 0.8018 | 0.6342 | 0.8765 | - |
| 0.224 | 1400 | 0.7124 | 0.6462 | 0.8764 | - |
| 0.24 | 1500 | 0.709 | 0.5232 | 0.8964 | - |
| 0.256 | 1600 | 0.6055 | 0.6109 | 0.8838 | - |
| 0.272 | 1700 | 0.7887 | 0.6620 | 0.8768 | - |
| 0.288 | 1800 | 0.789 | 0.5957 | 0.8829 | - |
| 0.304 | 1900 | 0.6711 | 0.5377 | 0.8946 | - |
| 0.32 | 2000 | 0.6086 | 0.5596 | 0.8932 | - |
| 0.336 | 2100 | 0.5067 | 0.5676 | 0.8861 | - |
| 0.352 | 2200 | 0.5387 | 0.5704 | 0.8900 | - |
| 0.368 | 2300 | 0.6574 | 0.5308 | 0.8890 | - |
| 0.384 | 2400 | 0.6232 | 0.5051 | 0.8928 | - |
| 0.4 | 2500 | 0.6045 | 0.5179 | 0.9023 | - |
| 0.416 | 2600 | 0.4795 | 0.4766 | 0.8960 | - |
| 0.432 | 2700 | 0.7372 | 0.5463 | 0.8979 | - |
| 0.448 | 2800 | 0.7593 | 0.5337 | 0.8878 | - |
| 0.464 | 2900 | 0.7384 | 0.5203 | 0.8923 | - |
| 0.48 | 3000 | 0.6336 | 0.5099 | 0.8897 | - |
| 0.496 | 3100 | 0.6634 | 0.4803 | 0.8954 | - |
| 0.512 | 3200 | 0.5443 | 0.4524 | 0.9048 | - |
| 0.528 | 3300 | 0.5292 | 0.4232 | 0.9104 | - |
| 0.544 | 3400 | 0.4633 | 0.4414 | 0.9093 | - |
| 0.56 | 3500 | 0.4442 | 0.4393 | 0.9087 | - |
| 0.576 | 3600 | 0.4443 | 0.4178 | 0.9128 | - |
| 0.592 | 3700 | 0.4736 | 0.4123 | 0.9134 | - |
| 0.608 | 3800 | 0.4077 | 0.4025 | 0.9174 | - |
| 0.624 | 3900 | 0.4069 | 0.4032 | 0.9156 | - |
| 0.64 | 4000 | 0.6939 | 0.4353 | 0.9146 | - |
| 0.656 | 4100 | 0.865 | 0.4154 | 0.9172 | - |
| 0.672 | 4200 | 0.8518 | 0.3925 | 0.9172 | - |
| 0.688 | 4300 | 0.5989 | 0.3864 | 0.9190 | - |
| 0.704 | 4400 | 0.5399 | 0.3679 | 0.9197 | - |
| 0.72 | 4500 | 0.497 | 0.3766 | 0.9221 | - |
| 0.736 | 4600 | 0.585 | 0.3708 | 0.9228 | - |
| 0.752 | 4700 | 0.6454 | 0.3608 | 0.9203 | - |
| 0.768 | 4800 | 0.5414 | 0.3593 | 0.9213 | - |
| 0.784 | 4900 | 0.4648 | 0.3634 | 0.9210 | - |
| 0.8 | 5000 | 0.5781 | 0.3782 | 0.9216 | - |
| 0.816 | 5100 | 0.4401 | 0.3662 | 0.9227 | - |
| 0.832 | 5200 | 0.5241 | 0.3595 | 0.9215 | - |
| 0.848 | 5300 | 0.459 | 0.3618 | 0.9215 | - |
| 0.864 | 5400 | 0.5529 | 0.3693 | 0.9216 | - |
| 0.88 | 5500 | 0.5202 | 0.3573 | 0.9218 | - |
| 0.896 | 5600 | 0.4703 | 0.3529 | 0.9231 | - |
| 0.912 | 5700 | 0.5658 | 0.3513 | 0.9245 | - |
| 0.928 | 5800 | 0.5016 | 0.3491 | 0.9236 | - |
| 0.944 | 5900 | 0.6306 | 0.3492 | 0.9257 | - |
| 0.96 | 6000 | 0.6721 | 0.3507 | 0.9266 | - |
| 0.976 | 6100 | 0.586 | 0.3509 | 0.9257 | - |
| 0.992 | 6200 | 0.0014 | 0.3511 | 0.9260 | - |
| 1.0 | 6250 | - | - | - | 0.9348 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Model tree for SMARTICT/gte-small-finetune-test
Base model
thenlper/gte-smallDataset used to train SMARTICT/gte-small-finetune-test
Evaluation results
- Cosine Accuracy on all nli devself-reported0.926
- Dot Accuracy on all nli devself-reported0.074
- Manhattan Accuracy on all nli devself-reported0.925
- Euclidean Accuracy on all nli devself-reported0.926
- Max Accuracy on all nli devself-reported0.926
- Cosine Accuracy on all nli testself-reported0.935
- Dot Accuracy on all nli testself-reported0.065
- Manhattan Accuracy on all nli testself-reported0.933
- Euclidean Accuracy on all nli testself-reported0.935
- Max Accuracy on all nli testself-reported0.935