YAML Metadata
		Warning:
	empty or missing yaml metadata in repo card
	(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
Mistral-7B-v0.1-4bit-32rank - GGUF
- Model creator: https://huggingface.co/LoftQ/
 - Original model: https://huggingface.co/LoftQ/Mistral-7B-v0.1-4bit-32rank/
 
Original model description:
license: mit language: - en pipeline_tag: text-generation tags: - 'quantization ' - lora
LoftQ Initialization
| Paper | Code | PEFT Example |
LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W.
This model, Mistral-7B-v0.1-4bit-32rank, is obtained from Mistral-7B-v0.1. 
The backbone is under LoftQ/Mistral-7B-v0.1-4bit-32rank and LoRA adapters are under the subfolder='loftq_init'.
Model Info
Backbone
- Stored format: 
torch.bfloat16 - Size: ~ 14 GiB
 - Loaded format: bitsandbytes nf4
 - Size loaded on GPU: ~3.5 GiB
 
LoRA adapters
- rank: 32
 - lora_alpha: 16
 - target_modules: ["down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"]
 
Usage
Training. Here's an example of loading this model and preparing for the LoRA fine-tuning.
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
MODEL_ID = "LoftQ/Mistral-7B-v0.1-4bit-32rank"
base_model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, 
    torch_dtype=torch.bfloat16,  # you may change it with different models
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,  # bfloat16 is recommended
        bnb_4bit_use_double_quant=False,
        bnb_4bit_quant_type='nf4',
    ),
)
peft_model = PeftModel.from_pretrained(
    base_model,
    MODEL_ID,
    subfolder="loftq_init",
    is_trainable=True,
)
# Do training with peft_model ...
See the full code at our Github Repo
Citation
@article{li2023loftq,
  title={Loftq: Lora-fine-tuning-aware quantization for large language models},
  author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo},
  journal={arXiv preprint arXiv:2310.08659},
  year={2023}
}
- Downloads last month
 - 493
 
							Hardware compatibility
						Log In
								
								to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support