Eldar Kurtic
add model
f28e05f
---
license: apache-2.0
language:
- en
tags:
- moe
- w4a16
- int4
- vllm
---
# Mixtral-8x7B-v0.1-quantized.w4a16
## Model Overview
- **Model Architecture:** Mixtral-8x7B-v0.1
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Activation quantization:** None
- **Release Date:** 3/1/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1).
It achieves an average score of 67.74 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 68.59.
### Model Optimizations
This model was obtained by only quantizing the weights to INT4 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized, except the MLP routers.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 2
model_name = "neuralmagic-ent/Mixtral-8x7B-v0.1-quantized.w4a16"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following command:
```bash
python quantize.py --model_path mistralai/Mixtral-8x7B-v0.1 --quant_path "output_dir" --calib_size 1024 --dampening_frac 0.1 --observer mse --actorder False
```
```python
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply
import argparse
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
def parse_actorder(value):
# Interpret the input value for --actorder
if value.lower() == "false":
return False
elif value.lower() == "group":
return "group"
else:
raise argparse.ArgumentTypeError("Invalid value for --actorder. Use 'group' or 'False'.")
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--num_bits', type=int, default=4)
parser.add_argument('--sequential_update', type=bool, default=True)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.05)
parser.add_argument('--observer', type=str, default="minmax")
parser.add_argument(
'--actorder',
type=parse_actorder,
default=False, # Default value is False
help="Specify actorder as 'group' (string) or False (boolean)."
)
args = parser.parse_args()
model = SparseAutoModelForCausalLM.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
use_cache=False,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "garage-bAInd/Open-Platypus"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
concat_txt = example["instruction"] + "\n" + example["output"]
return {"text": concat_txt}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
truncation=False,
add_special_tokens=True,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
quant_scheme = QuantizationScheme(
targets=["Linear"],
weights=QuantizationArgs(
num_bits=args.num_bits,
type=QuantizationType.INT,
symmetric=True,
group_size=128,
strategy=QuantizationStrategy.GROUP,
observer=args.observer,
actorder=args.actorder
),
input_activations=None,
output_activations=None,
)
recipe = [
GPTQModifier(
targets=["Linear"],
ignore=["lm_head", "re:.*block_sparse_moe.gate"],
sequential_update=args.sequential_update,
dampening_frac=args.dampening_frac,
config_groups={"group_0": quant_scheme},
)
]
oneshot(
model=model,
dataset=ds,
recipe=recipe,
num_calibration_samples=args.calib_size,
)
# Save to disk compressed.
SAVE_DIR = args.quant_path
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```
## Evaluation
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) using the following command:
OpenLLM Leaderboard V1:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/Mixtral-8x7B-v0.1-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
### Accuracy
#### OpenLLM Leaderboard V1 evaluation scores
| Metric | mistralai/Mixtral-8x7B-v0.1 | neuralmagic-ent/Mixtral-8x7B-v0.1-quantized.w4a16 |
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
| ARC-Challenge (Acc-Norm, 25-shot) | 66.55 | 65.61 |
| GSM8K (Strict-Match, 5-shot) | 59.89 | 58.07 |
| HellaSwag (Acc-Norm, 10-shot) | 86.65 | 85.21 |
| MMLU (Acc, 5-shot) | 70.33 | 69.23 |
| TruthfulQA (MC2, 0-shot) | 46.65 | 47.18 |
| Winogrande (Acc, 5-shot) | 81.45 | 81.14 |
| **Average Score** | **68.59** | **67.74** |
| **Recovery** | **100.00** | **98.76** |