NaViL-2B / modeling_navil_chat.py
Changyao's picture
Upload folder using huggingface_hub
20f5bc9 verified
# --------------------------------------------------------
# NaViL
# Copyright (c) 2025 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import os
import warnings
from typing import Any, List, Optional, Tuple, Union
import copy
from dataclasses import dataclass
import torch
import torch.distributed as dist
from torch import nn
from torch.nn import CrossEntropyLoss
import transformers
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm
from .configuration_navil_chat import NaViLChatConfig
from .modeling_navil_vit_anyres import NaViLVisionModelAnyRes
from .conversation import get_conv_template
from .modeling_internlm2_ve import InternLM2VEForCausalLM
# from navil.model.qwen3.modeling_qwen3_ve import Qwen3VEForCausalLM
from .modeling_internlm2_ve import InternLM2RMSNorm
from .image_processing_qwen2_vl import Qwen2VLImageProcessor
from .constants import (
SPECIAL_TOKEN_LIST,
IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN, IMG_UNCOND_TOKEN,
VAE_MEAN, VAE_STD,
)
from .modular_intern_vit import (
InternVisionFlashAttention2,
InternVisionSdpaAttention,
InternMLP,
NORM2FN,
InternVisionRotaryEmbedding,
)
logger = logging.get_logger(__name__)
logger.setLevel(logging.INFO)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
@dataclass
class CausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
log_dict: Optional[dict] = None
class NaViL(PreTrainedModel):
config_class = NaViLChatConfig
main_input_name = 'pixel_values'
_no_split_modules = ['NaViLVisionModelAnyRes', 'InternLM2DecoderLayer', 'Qwen3DecoderLayer']
_supports_flash_attn_2 = True
def __init__(self, config: NaViLChatConfig, vision_model=None, language_model=None):
super().__init__(config)
self.config = config
assert version_cmp(transformers.__version__, '4.51.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.patch_aspect_ratio = 1.0
self.ps_version = config.ps_version
self.llm_arch_name = config.llm_config.architectures[0]
logger.info(f'init - image_size: {image_size}, patch_size: {patch_size}, num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = NaViLVisionModelAnyRes(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
llm_config = config.llm_config
if config.llm_config.architectures[0] == 'InternLM2VEForCausalLM':
self.language_model = InternLM2VEForCausalLM(llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.img_context_token_id = None
self.img_start_token_id = None
self.img_end_token_id = None
self.img_uncond_token_id = None
self.img_line_break_token_id = None
self.img_frame_break_token_id = None
self.pad_token_id = None
self.conv_template = get_conv_template(self.template)
if hasattr(config, 'system_message'):
self.system_message = config.system_message
else:
self.system_message = self.conv_template.system_message
min_pixels = config.min_dynamic_patch * (patch_size ** 2)
max_pixels = config.max_dynamic_patch * (patch_size ** 2)
down_sample_ratio = config.vision_config.downsample_ratio
self.image_processor = Qwen2VLImageProcessor(
do_resize=False,
do_pad=True,
do_rescale=True,
do_normalize=True,
image_mean=VAE_MEAN,
image_std=VAE_STD,
min_pixels=min_pixels,
max_pixels=max_pixels,
patch_size=patch_size,
temporal_patch_size=1,
merge_size=int(1.0 / down_sample_ratio),
)
##### ---- Special token embeddings ---- #####
self.special_token_embedding = nn.Embedding(len(SPECIAL_TOKEN_LIST), config.llm_config.hidden_size)
self.special_token_list = copy.deepcopy(SPECIAL_TOKEN_LIST)
self.special_token_id_list = None # Remember to initialize this in the training script after tokenizer is loaded
self.group = None # Distributed group. Remember to set this in the training script
def init_special_token_ids(self, tokenizer):
special_token_id_list = []
for token in SPECIAL_TOKEN_LIST:
special_token_id_list.append(tokenizer.convert_tokens_to_ids(token))
self.special_token_id_list = special_token_id_list
self.img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
self.img_end_token_id = tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
self.img_uncond_token_id = tokenizer.convert_tokens_to_ids(IMG_UNCOND_TOKEN)
def replace_img_special_tokens(self, input_embeds, input_ids):
assert self.special_token_id_list is not None, "model's special_token_id_list is not initialized"
for i, token_id in enumerate(self.special_token_id_list):
token_pos = input_ids == token_id
input_embeds[token_pos] = input_embeds[token_pos] * 0.0 + self.special_token_embedding.weight[i]
return input_embeds
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, (nn.LayerNorm, Qwen2RMSNorm, InternLM2RMSNorm)):
if hasattr(module, 'bias') and module.bias is not None:
module.bias.data.zero_()
if module.weight is not None:
module.weight.data.fill_(1.0)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
generation_modality: Optional[int] = 0,
statistics: Optional[torch.LongTensor] = None,
loss_weight: Optional[List] = None,
loss_reduction_all_gather: Optional[bool] = False,
padding_type: Optional[str] = None,
type_ids: Optional[torch.LongTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
# cache_position: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
ignore_flag = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
if video_grid_thw is not None:
grid_thw = video_grid_thw
else:
grid_thw = image_grid_thw
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw)
vit_embeds = vit_embeds[image_flags == 1]
vit_embeds_ori = vit_embeds_ori[image_flags == 1]
vit_batch_size = image_flags.sum().item()
log_dict_keys = [
"text_loss", "text_acc1",
]
log_dict = {k: torch.tensor(0.0, device=self.device) for k in log_dict_keys}
return_feature_scale = True
B, N, C = input_embeds.shape
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
# ignore_flag = False
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}', force=True)
n_token = selected.sum()
if n_token > vit_embeds.shape[0]:
selected = selected.view(-1, selected.shape[-1]) # 确保是 [B, N] 形状
batch_size = selected.shape[0]
max_visual_tokens = vit_embeds.shape[0] // batch_size # 每个批次可用的视觉特征数量
for i in range(batch_size):
# 获取当前批次中的图像标记位置
curr_selected = selected[i]
# 只保留前 max_visual_tokens 个标记位置
curr_indices = torch.where(curr_selected)[0][:max_visual_tokens]
# 更新选择标记
selected[i] = False
selected[i, curr_indices] = True
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
ignore_flag = True
# input_embeds = input_embeds.reshape(B, N, C)
visual_token_mask = (selected + (input_ids == self.img_start_token_id))
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
visual_token_mask=visual_token_mask,
generation_modality=generation_modality,
padding_type=padding_type, # or self.train_padding_type,
skip_lm_head=False, # imgen
return_feature_scale=return_feature_scale,
)
logits = outputs.logits # B, N, C
if labels is not None and loss_weight is not None:
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_weights = loss_weight[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none')
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_weights = shift_weights.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
shift_weights = shift_weights.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
shift_weights_sum = shift_weights.sum()
if loss_reduction_all_gather:
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG, group=self.group)
pred_ids = shift_logits.argmax(dim=-1)
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum()
log_dict.update({
"text_loss": ((loss * shift_weights).sum() / shift_weights_sum).detach(),
"text_acc1": pred_acc
})
loss = loss * shift_weights
loss = loss.sum() / shift_weights_sum
if ignore_flag:
loss = loss * 0.0
elif labels is not None:
# To reduce gpu memory, remove the image parts of the logits and labels
shift_selected = (input_ids == self.img_context_token_id)[..., :-1]
shift_logits = logits[..., :-1, :][~shift_selected]
shift_labels = labels[..., 1:][~shift_selected]
# Shift so that tokens < n predict n
# shift_logits = logits[..., :-1, :].contiguous()
# shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
pred_ids = shift_logits.argmax(dim=-1)
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum()
log_dict.update({
"text_loss": loss.mean().detach(),
"text_acc1": pred_acc
})
if ignore_flag:
loss = loss * 0.0
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
if return_feature_scale:
log_dict["feature_scale"] = {
"image": outputs.feature_scale[0],
"text": outputs.feature_scale[1],
}
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
log_dict=log_dict
)
def extract_feature(self, pixel_values, grid_thw=None):
if grid_thw is not None:
grid_thw = grid_thw.to(pixel_values.device)
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True,
grid_thw=grid_thw
).last_hidden_state
vit_embeds = pixel_shuffle_v2(vit_embeds, scale_factor=self.downsample_ratio, patch_aspect_ratio=self.patch_aspect_ratio)
vit_embeds_after_mlp = self.mlp1(vit_embeds)
return vit_embeds_after_mlp, vit_embeds
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, num_scales: list = [2],
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
IMG_LINE_BREAK_TOKEN='<IMG_LINE_BREAK>', IMG_FRAME_BREAK_TOKEN='<IMG_FRAME_BREAK>',
anyres_image_size=True,
verbose=False,
):
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' * len(num_scales) + question
if num_patches_list is None:
assert not anyres_image_size, "Please provide `num_patches_list` when anyres_image_size is True."
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or anyres_image_size or len(pixel_values) == sum(num_patches_list)
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
self.img_start_token_id = img_start_token_id
self.img_line_break_token_id = tokenizer.convert_tokens_to_ids(IMG_LINE_BREAK_TOKEN)
self.img_frame_break_token_id = tokenizer.convert_tokens_to_ids(IMG_FRAME_BREAK_TOKEN)
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
if anyres_image_size:
merge_size = int(1.0 / self.downsample_ratio)
for image_idx in range(len(num_scales)):
num_scales_prev = sum(num_scales[:image_idx])
num_scale = num_scales[image_idx]
_num_image_token_list = num_patches_list[num_scales_prev:num_scales_prev + num_scale]
image_tokens = f"{IMG_START_TOKEN}"
for i in range(len(_num_image_token_list)):
_image_tokens = ""
t, h, w = _num_image_token_list[i][0], _num_image_token_list[i][1] // merge_size, _num_image_token_list[i][2] // merge_size
for _ in range(t):
for _ in range(h):
_image_tokens += f"{IMG_CONTEXT_TOKEN * w}{IMG_LINE_BREAK_TOKEN}"
_image_tokens += f"{IMG_FRAME_BREAK_TOKEN}"
image_tokens += _image_tokens
image_tokens += f"{IMG_END_TOKEN}"
query = query.replace('<image>', image_tokens, 1)
else:
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=num_patches_list,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep)[0].strip()
# fix for InternLM2-base (textvqa)
response = response.replace("<|im_end|", "")
response = response.replace("<|im_end", "")
response = response.replace("<|im", "")
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(IMG_LINE_BREAK_TOKEN, '')
query_to_print = query_to_print.replace(IMG_FRAME_BREAK_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
grid_thw = image_grid_thw
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
B, N, C = input_embeds.shape
# input_embeds = input_embeds.reshape(B * N, C)
# input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id) # B, N
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
# input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
selected = None
# input_embeds = self.replace_special_tokens(input_embeds, input_ids)
visual_token_mask = selected + (input_ids == self.img_start_token_id) if selected is not None else None
position_ids = None
generate_kwargs['position_ids'] = position_ids
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
# return_dict=return_dict,
use_cache=True,
visual_token_mask=visual_token_mask,
**generate_kwargs,
)
return outputs
def pixel_shuffle_v2(x, scale_factor=0.5, patch_aspect_ratio=1.0):
# input shape: N, L, C or N, H, W, C
# output shape: N, L * (scale_factor ** 2), C / (scale_factor ** 2)
if x.ndim == 3:
n, l, c = x.size()
h = w = int(l ** 0.5)
# N, L, C --> N, H, W, C
x = x.reshape(n, h, w, c)
n, h, w, c = x.size()
h_scale_factor = scale_factor * (patch_aspect_ratio ** 0.5)
w_scale_factor = scale_factor / (patch_aspect_ratio ** 0.5)
# N, H, W, C --> N, H, W * w_scale_factor, C // w_scale_factor
x = x.reshape(n, h, int(w * w_scale_factor), int(c / w_scale_factor))
# N, H, W * w_scale_factor, C // w_scale_factor --> N, W * w_scale_factor, H, C // w_scale_factor
x = x.permute(0, 2, 1, 3).contiguous()
# N, W * w_scale_factor, H, C // w_scale_factor --> N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor)
x = x.reshape(n, int(w * w_scale_factor), int(h * h_scale_factor), int(c / (w_scale_factor * h_scale_factor)))
# N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor)
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, L * (scale_factor ** 2), C // (scale_factor ** 2)
x = x.reshape(n, int(h * h_scale_factor * w * w_scale_factor), int(c / (h_scale_factor * w_scale_factor)))
return x