|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import warnings |
|
|
from typing import Any, List, Optional, Tuple, Union |
|
|
import copy |
|
|
|
|
|
from dataclasses import dataclass |
|
|
|
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
|
|
|
import transformers |
|
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, |
|
|
LlamaTokenizer, Qwen2ForCausalLM) |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.utils import ModelOutput, logging |
|
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm |
|
|
|
|
|
from .configuration_navil_chat import NaViLChatConfig |
|
|
from .modeling_navil_vit_anyres import NaViLVisionModelAnyRes |
|
|
|
|
|
from .conversation import get_conv_template |
|
|
from .modeling_internlm2_ve import InternLM2VEForCausalLM |
|
|
|
|
|
from .modeling_internlm2_ve import InternLM2RMSNorm |
|
|
from .image_processing_qwen2_vl import Qwen2VLImageProcessor |
|
|
from .constants import ( |
|
|
SPECIAL_TOKEN_LIST, |
|
|
IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN, IMG_UNCOND_TOKEN, |
|
|
VAE_MEAN, VAE_STD, |
|
|
) |
|
|
from .modular_intern_vit import ( |
|
|
InternVisionFlashAttention2, |
|
|
InternVisionSdpaAttention, |
|
|
InternMLP, |
|
|
NORM2FN, |
|
|
InternVisionRotaryEmbedding, |
|
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
|
import operator |
|
|
|
|
|
from packaging import version |
|
|
op_func = getattr(operator, op) |
|
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
|
class CausalLMOutputWithPast(ModelOutput): |
|
|
""" |
|
|
Base class for causal language model (or autoregressive) outputs. |
|
|
|
|
|
Args: |
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
|
Language modeling loss (for next-token prediction). |
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
|
`past_key_values` input) to speed up sequential decoding. |
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
|
sequence_length)`. |
|
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
|
heads. |
|
|
""" |
|
|
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
|
logits: torch.FloatTensor = None |
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
log_dict: Optional[dict] = None |
|
|
|
|
|
|
|
|
class NaViL(PreTrainedModel): |
|
|
config_class = NaViLChatConfig |
|
|
main_input_name = 'pixel_values' |
|
|
_no_split_modules = ['NaViLVisionModelAnyRes', 'InternLM2DecoderLayer', 'Qwen3DecoderLayer'] |
|
|
_supports_flash_attn_2 = True |
|
|
|
|
|
def __init__(self, config: NaViLChatConfig, vision_model=None, language_model=None): |
|
|
super().__init__(config) |
|
|
self.config = config |
|
|
|
|
|
assert version_cmp(transformers.__version__, '4.51.0', 'ge') |
|
|
image_size = config.force_image_size or config.vision_config.image_size |
|
|
patch_size = config.vision_config.patch_size |
|
|
self.patch_size = patch_size |
|
|
self.select_layer = config.select_layer |
|
|
self.template = config.template |
|
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
|
self.downsample_ratio = config.downsample_ratio |
|
|
self.patch_aspect_ratio = 1.0 |
|
|
self.ps_version = config.ps_version |
|
|
self.llm_arch_name = config.llm_config.architectures[0] |
|
|
|
|
|
logger.info(f'init - image_size: {image_size}, patch_size: {patch_size}, num_image_token: {self.num_image_token}') |
|
|
logger.info(f'ps_version: {self.ps_version}') |
|
|
if vision_model is not None: |
|
|
self.vision_model = vision_model |
|
|
else: |
|
|
self.vision_model = NaViLVisionModelAnyRes(config.vision_config) |
|
|
if language_model is not None: |
|
|
self.language_model = language_model |
|
|
else: |
|
|
llm_config = config.llm_config |
|
|
if config.llm_config.architectures[0] == 'InternLM2VEForCausalLM': |
|
|
self.language_model = InternLM2VEForCausalLM(llm_config) |
|
|
else: |
|
|
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') |
|
|
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
|
|
self.mlp1 = nn.Sequential( |
|
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(llm_hidden_size, llm_hidden_size) |
|
|
) |
|
|
|
|
|
self.img_context_token_id = None |
|
|
self.img_start_token_id = None |
|
|
self.img_end_token_id = None |
|
|
self.img_uncond_token_id = None |
|
|
self.img_line_break_token_id = None |
|
|
self.img_frame_break_token_id = None |
|
|
self.pad_token_id = None |
|
|
self.conv_template = get_conv_template(self.template) |
|
|
if hasattr(config, 'system_message'): |
|
|
self.system_message = config.system_message |
|
|
else: |
|
|
self.system_message = self.conv_template.system_message |
|
|
|
|
|
min_pixels = config.min_dynamic_patch * (patch_size ** 2) |
|
|
max_pixels = config.max_dynamic_patch * (patch_size ** 2) |
|
|
down_sample_ratio = config.vision_config.downsample_ratio |
|
|
self.image_processor = Qwen2VLImageProcessor( |
|
|
do_resize=False, |
|
|
do_pad=True, |
|
|
do_rescale=True, |
|
|
do_normalize=True, |
|
|
image_mean=VAE_MEAN, |
|
|
image_std=VAE_STD, |
|
|
min_pixels=min_pixels, |
|
|
max_pixels=max_pixels, |
|
|
patch_size=patch_size, |
|
|
temporal_patch_size=1, |
|
|
merge_size=int(1.0 / down_sample_ratio), |
|
|
) |
|
|
|
|
|
|
|
|
self.special_token_embedding = nn.Embedding(len(SPECIAL_TOKEN_LIST), config.llm_config.hidden_size) |
|
|
self.special_token_list = copy.deepcopy(SPECIAL_TOKEN_LIST) |
|
|
self.special_token_id_list = None |
|
|
|
|
|
self.group = None |
|
|
|
|
|
def init_special_token_ids(self, tokenizer): |
|
|
special_token_id_list = [] |
|
|
for token in SPECIAL_TOKEN_LIST: |
|
|
special_token_id_list.append(tokenizer.convert_tokens_to_ids(token)) |
|
|
self.special_token_id_list = special_token_id_list |
|
|
|
|
|
self.img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
|
self.img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN) |
|
|
self.img_end_token_id = tokenizer.convert_tokens_to_ids(IMG_END_TOKEN) |
|
|
self.img_uncond_token_id = tokenizer.convert_tokens_to_ids(IMG_UNCOND_TOKEN) |
|
|
|
|
|
def replace_img_special_tokens(self, input_embeds, input_ids): |
|
|
assert self.special_token_id_list is not None, "model's special_token_id_list is not initialized" |
|
|
for i, token_id in enumerate(self.special_token_id_list): |
|
|
token_pos = input_ids == token_id |
|
|
input_embeds[token_pos] = input_embeds[token_pos] * 0.0 + self.special_token_embedding.weight[i] |
|
|
|
|
|
return input_embeds |
|
|
|
|
|
def _init_weights(self, module): |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
|
elif isinstance(module, (nn.LayerNorm, Qwen2RMSNorm, InternLM2RMSNorm)): |
|
|
if hasattr(module, 'bias') and module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
if module.weight is not None: |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.FloatTensor, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
image_flags: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
generation_modality: Optional[int] = 0, |
|
|
statistics: Optional[torch.LongTensor] = None, |
|
|
loss_weight: Optional[List] = None, |
|
|
loss_reduction_all_gather: Optional[bool] = False, |
|
|
padding_type: Optional[str] = None, |
|
|
type_ids: Optional[torch.LongTensor] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
|
rope_deltas: Optional[torch.LongTensor] = None, |
|
|
|
|
|
second_per_grid_ts: Optional[torch.Tensor] = None, |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
ignore_flag = False |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
image_flags = image_flags.squeeze(-1) |
|
|
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() |
|
|
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids) |
|
|
|
|
|
if video_grid_thw is not None: |
|
|
grid_thw = video_grid_thw |
|
|
else: |
|
|
grid_thw = image_grid_thw |
|
|
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw) |
|
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
vit_embeds_ori = vit_embeds_ori[image_flags == 1] |
|
|
vit_batch_size = image_flags.sum().item() |
|
|
|
|
|
log_dict_keys = [ |
|
|
"text_loss", "text_acc1", |
|
|
] |
|
|
log_dict = {k: torch.tensor(0.0, device=self.device) for k in log_dict_keys} |
|
|
return_feature_scale = True |
|
|
|
|
|
B, N, C = input_embeds.shape |
|
|
selected = (input_ids == self.img_context_token_id) |
|
|
try: |
|
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) |
|
|
|
|
|
except Exception as e: |
|
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
|
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' |
|
|
f'vit_embeds.shape={vit_embeds.shape}', force=True) |
|
|
n_token = selected.sum() |
|
|
if n_token > vit_embeds.shape[0]: |
|
|
selected = selected.view(-1, selected.shape[-1]) |
|
|
batch_size = selected.shape[0] |
|
|
max_visual_tokens = vit_embeds.shape[0] // batch_size |
|
|
for i in range(batch_size): |
|
|
|
|
|
curr_selected = selected[i] |
|
|
|
|
|
curr_indices = torch.where(curr_selected)[0][:max_visual_tokens] |
|
|
|
|
|
selected[i] = False |
|
|
selected[i, curr_indices] = True |
|
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] |
|
|
ignore_flag = True |
|
|
|
|
|
|
|
|
visual_token_mask = (selected + (input_ids == self.img_start_token_id)) |
|
|
|
|
|
outputs = self.language_model( |
|
|
inputs_embeds=input_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
visual_token_mask=visual_token_mask, |
|
|
generation_modality=generation_modality, |
|
|
padding_type=padding_type, |
|
|
skip_lm_head=False, |
|
|
return_feature_scale=return_feature_scale, |
|
|
) |
|
|
logits = outputs.logits |
|
|
|
|
|
if labels is not None and loss_weight is not None: |
|
|
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device) |
|
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
shift_weights = loss_weight[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss(reduction='none') |
|
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
shift_weights = shift_weights.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
shift_weights = shift_weights.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
shift_weights_sum = shift_weights.sum() |
|
|
if loss_reduction_all_gather: |
|
|
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG, group=self.group) |
|
|
|
|
|
pred_ids = shift_logits.argmax(dim=-1) |
|
|
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum() |
|
|
|
|
|
log_dict.update({ |
|
|
"text_loss": ((loss * shift_weights).sum() / shift_weights_sum).detach(), |
|
|
"text_acc1": pred_acc |
|
|
}) |
|
|
|
|
|
loss = loss * shift_weights |
|
|
loss = loss.sum() / shift_weights_sum |
|
|
|
|
|
if ignore_flag: |
|
|
loss = loss * 0.0 |
|
|
|
|
|
elif labels is not None: |
|
|
|
|
|
shift_selected = (input_ids == self.img_context_token_id)[..., :-1] |
|
|
shift_logits = logits[..., :-1, :][~shift_selected] |
|
|
shift_labels = labels[..., 1:][~shift_selected] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
pred_ids = shift_logits.argmax(dim=-1) |
|
|
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum() |
|
|
|
|
|
log_dict.update({ |
|
|
"text_loss": loss.mean().detach(), |
|
|
"text_acc1": pred_acc |
|
|
}) |
|
|
|
|
|
if ignore_flag: |
|
|
loss = loss * 0.0 |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
if return_feature_scale: |
|
|
log_dict["feature_scale"] = { |
|
|
"image": outputs.feature_scale[0], |
|
|
"text": outputs.feature_scale[1], |
|
|
} |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
log_dict=log_dict |
|
|
) |
|
|
|
|
|
def extract_feature(self, pixel_values, grid_thw=None): |
|
|
|
|
|
if grid_thw is not None: |
|
|
grid_thw = grid_thw.to(pixel_values.device) |
|
|
|
|
|
vit_embeds = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
output_hidden_states=False, |
|
|
return_dict=True, |
|
|
grid_thw=grid_thw |
|
|
).last_hidden_state |
|
|
|
|
|
vit_embeds = pixel_shuffle_v2(vit_embeds, scale_factor=self.downsample_ratio, patch_aspect_ratio=self.patch_aspect_ratio) |
|
|
|
|
|
vit_embeds_after_mlp = self.mlp1(vit_embeds) |
|
|
|
|
|
return vit_embeds_after_mlp, vit_embeds |
|
|
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
|
num_patches_list=None, num_scales: list = [2], |
|
|
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', |
|
|
IMG_LINE_BREAK_TOKEN='<IMG_LINE_BREAK>', IMG_FRAME_BREAK_TOKEN='<IMG_FRAME_BREAK>', |
|
|
anyres_image_size=True, |
|
|
verbose=False, |
|
|
): |
|
|
|
|
|
if history is None and pixel_values is not None and '<image>' not in question: |
|
|
question = '<image>\n' * len(num_scales) + question |
|
|
|
|
|
if num_patches_list is None: |
|
|
assert not anyres_image_size, "Please provide `num_patches_list` when anyres_image_size is True." |
|
|
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] |
|
|
assert pixel_values is None or anyres_image_size or len(pixel_values) == sum(num_patches_list) |
|
|
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
|
self.img_context_token_id = img_context_token_id |
|
|
img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN) |
|
|
self.img_start_token_id = img_start_token_id |
|
|
self.img_line_break_token_id = tokenizer.convert_tokens_to_ids(IMG_LINE_BREAK_TOKEN) |
|
|
self.img_frame_break_token_id = tokenizer.convert_tokens_to_ids(IMG_FRAME_BREAK_TOKEN) |
|
|
|
|
|
template = get_conv_template(self.template) |
|
|
template.system_message = self.system_message |
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
|
|
|
|
history = [] if history is None else history |
|
|
for (old_question, old_answer) in history: |
|
|
template.append_message(template.roles[0], old_question) |
|
|
template.append_message(template.roles[1], old_answer) |
|
|
template.append_message(template.roles[0], question) |
|
|
template.append_message(template.roles[1], None) |
|
|
query = template.get_prompt() |
|
|
|
|
|
if verbose and pixel_values is not None: |
|
|
image_bs = pixel_values.shape[0] |
|
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
|
|
if anyres_image_size: |
|
|
merge_size = int(1.0 / self.downsample_ratio) |
|
|
for image_idx in range(len(num_scales)): |
|
|
num_scales_prev = sum(num_scales[:image_idx]) |
|
|
num_scale = num_scales[image_idx] |
|
|
_num_image_token_list = num_patches_list[num_scales_prev:num_scales_prev + num_scale] |
|
|
image_tokens = f"{IMG_START_TOKEN}" |
|
|
for i in range(len(_num_image_token_list)): |
|
|
_image_tokens = "" |
|
|
t, h, w = _num_image_token_list[i][0], _num_image_token_list[i][1] // merge_size, _num_image_token_list[i][2] // merge_size |
|
|
for _ in range(t): |
|
|
for _ in range(h): |
|
|
_image_tokens += f"{IMG_CONTEXT_TOKEN * w}{IMG_LINE_BREAK_TOKEN}" |
|
|
_image_tokens += f"{IMG_FRAME_BREAK_TOKEN}" |
|
|
image_tokens += _image_tokens |
|
|
image_tokens += f"{IMG_END_TOKEN}" |
|
|
query = query.replace('<image>', image_tokens, 1) |
|
|
else: |
|
|
for num_patches in num_patches_list: |
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
|
query = query.replace('<image>', image_tokens, 1) |
|
|
|
|
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
|
input_ids = model_inputs['input_ids'].cuda() |
|
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
|
generation_config['eos_token_id'] = eos_token_id |
|
|
generation_output = self.generate( |
|
|
pixel_values=pixel_values, |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
image_grid_thw=num_patches_list, |
|
|
**generation_config |
|
|
) |
|
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
|
response = response.split(template.sep)[0].strip() |
|
|
|
|
|
response = response.replace("<|im_end|", "") |
|
|
response = response.replace("<|im_end", "") |
|
|
response = response.replace("<|im", "") |
|
|
history.append((question, response)) |
|
|
if return_history: |
|
|
return response, history |
|
|
else: |
|
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') |
|
|
query_to_print = query_to_print.replace(IMG_LINE_BREAK_TOKEN, '') |
|
|
query_to_print = query_to_print.replace(IMG_FRAME_BREAK_TOKEN, '') |
|
|
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') |
|
|
if verbose: |
|
|
print(query_to_print, response) |
|
|
|
|
|
return response |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
input_ids: Optional[torch.FloatTensor] = None, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
visual_features: Optional[torch.FloatTensor] = None, |
|
|
generation_config: Optional[GenerationConfig] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
|
**generate_kwargs, |
|
|
) -> torch.LongTensor: |
|
|
|
|
|
assert self.img_context_token_id is not None |
|
|
|
|
|
grid_thw = image_grid_thw |
|
|
|
|
|
if pixel_values is not None: |
|
|
if visual_features is not None: |
|
|
vit_embeds = visual_features |
|
|
else: |
|
|
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw) |
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids) |
|
|
B, N, C = input_embeds.shape |
|
|
|
|
|
|
|
|
|
|
|
selected = (input_ids == self.img_context_token_id) |
|
|
assert selected.sum() != 0 |
|
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
|
|
|
|
|
else: |
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids) |
|
|
selected = None |
|
|
|
|
|
|
|
|
visual_token_mask = selected + (input_ids == self.img_start_token_id) if selected is not None else None |
|
|
|
|
|
position_ids = None |
|
|
generate_kwargs['position_ids'] = position_ids |
|
|
|
|
|
outputs = self.language_model.generate( |
|
|
inputs_embeds=input_embeds, |
|
|
attention_mask=attention_mask, |
|
|
generation_config=generation_config, |
|
|
output_hidden_states=output_hidden_states, |
|
|
|
|
|
use_cache=True, |
|
|
visual_token_mask=visual_token_mask, |
|
|
**generate_kwargs, |
|
|
) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
def pixel_shuffle_v2(x, scale_factor=0.5, patch_aspect_ratio=1.0): |
|
|
|
|
|
|
|
|
|
|
|
if x.ndim == 3: |
|
|
n, l, c = x.size() |
|
|
h = w = int(l ** 0.5) |
|
|
|
|
|
x = x.reshape(n, h, w, c) |
|
|
|
|
|
n, h, w, c = x.size() |
|
|
|
|
|
h_scale_factor = scale_factor * (patch_aspect_ratio ** 0.5) |
|
|
w_scale_factor = scale_factor / (patch_aspect_ratio ** 0.5) |
|
|
|
|
|
|
|
|
x = x.reshape(n, h, int(w * w_scale_factor), int(c / w_scale_factor)) |
|
|
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
|
|
x = x.reshape(n, int(w * w_scale_factor), int(h * h_scale_factor), int(c / (w_scale_factor * h_scale_factor))) |
|
|
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
|
|
x = x.reshape(n, int(h * h_scale_factor * w * w_scale_factor), int(c / (h_scale_factor * w_scale_factor))) |
|
|
|
|
|
return x |
|
|
|