File size: 26,746 Bytes
20f5bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
# --------------------------------------------------------
# NaViL
# Copyright (c) 2025 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import os
import warnings
from typing import Any, List, Optional, Tuple, Union
import copy
from dataclasses import dataclass
import torch
import torch.distributed as dist
from torch import nn
from torch.nn import CrossEntropyLoss
import transformers
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm
from .configuration_navil_chat import NaViLChatConfig
from .modeling_navil_vit_anyres import NaViLVisionModelAnyRes
from .conversation import get_conv_template
from .modeling_internlm2_ve import InternLM2VEForCausalLM
# from navil.model.qwen3.modeling_qwen3_ve import Qwen3VEForCausalLM
from .modeling_internlm2_ve import InternLM2RMSNorm
from .image_processing_qwen2_vl import Qwen2VLImageProcessor
from .constants import (
SPECIAL_TOKEN_LIST,
IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN, IMG_UNCOND_TOKEN,
VAE_MEAN, VAE_STD,
)
from .modular_intern_vit import (
InternVisionFlashAttention2,
InternVisionSdpaAttention,
InternMLP,
NORM2FN,
InternVisionRotaryEmbedding,
)
logger = logging.get_logger(__name__)
logger.setLevel(logging.INFO)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
@dataclass
class CausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
log_dict: Optional[dict] = None
class NaViL(PreTrainedModel):
config_class = NaViLChatConfig
main_input_name = 'pixel_values'
_no_split_modules = ['NaViLVisionModelAnyRes', 'InternLM2DecoderLayer', 'Qwen3DecoderLayer']
_supports_flash_attn_2 = True
def __init__(self, config: NaViLChatConfig, vision_model=None, language_model=None):
super().__init__(config)
self.config = config
assert version_cmp(transformers.__version__, '4.51.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.patch_aspect_ratio = 1.0
self.ps_version = config.ps_version
self.llm_arch_name = config.llm_config.architectures[0]
logger.info(f'init - image_size: {image_size}, patch_size: {patch_size}, num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = NaViLVisionModelAnyRes(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
llm_config = config.llm_config
if config.llm_config.architectures[0] == 'InternLM2VEForCausalLM':
self.language_model = InternLM2VEForCausalLM(llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.img_context_token_id = None
self.img_start_token_id = None
self.img_end_token_id = None
self.img_uncond_token_id = None
self.img_line_break_token_id = None
self.img_frame_break_token_id = None
self.pad_token_id = None
self.conv_template = get_conv_template(self.template)
if hasattr(config, 'system_message'):
self.system_message = config.system_message
else:
self.system_message = self.conv_template.system_message
min_pixels = config.min_dynamic_patch * (patch_size ** 2)
max_pixels = config.max_dynamic_patch * (patch_size ** 2)
down_sample_ratio = config.vision_config.downsample_ratio
self.image_processor = Qwen2VLImageProcessor(
do_resize=False,
do_pad=True,
do_rescale=True,
do_normalize=True,
image_mean=VAE_MEAN,
image_std=VAE_STD,
min_pixels=min_pixels,
max_pixels=max_pixels,
patch_size=patch_size,
temporal_patch_size=1,
merge_size=int(1.0 / down_sample_ratio),
)
##### ---- Special token embeddings ---- #####
self.special_token_embedding = nn.Embedding(len(SPECIAL_TOKEN_LIST), config.llm_config.hidden_size)
self.special_token_list = copy.deepcopy(SPECIAL_TOKEN_LIST)
self.special_token_id_list = None # Remember to initialize this in the training script after tokenizer is loaded
self.group = None # Distributed group. Remember to set this in the training script
def init_special_token_ids(self, tokenizer):
special_token_id_list = []
for token in SPECIAL_TOKEN_LIST:
special_token_id_list.append(tokenizer.convert_tokens_to_ids(token))
self.special_token_id_list = special_token_id_list
self.img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
self.img_end_token_id = tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
self.img_uncond_token_id = tokenizer.convert_tokens_to_ids(IMG_UNCOND_TOKEN)
def replace_img_special_tokens(self, input_embeds, input_ids):
assert self.special_token_id_list is not None, "model's special_token_id_list is not initialized"
for i, token_id in enumerate(self.special_token_id_list):
token_pos = input_ids == token_id
input_embeds[token_pos] = input_embeds[token_pos] * 0.0 + self.special_token_embedding.weight[i]
return input_embeds
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, (nn.LayerNorm, Qwen2RMSNorm, InternLM2RMSNorm)):
if hasattr(module, 'bias') and module.bias is not None:
module.bias.data.zero_()
if module.weight is not None:
module.weight.data.fill_(1.0)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
generation_modality: Optional[int] = 0,
statistics: Optional[torch.LongTensor] = None,
loss_weight: Optional[List] = None,
loss_reduction_all_gather: Optional[bool] = False,
padding_type: Optional[str] = None,
type_ids: Optional[torch.LongTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
# cache_position: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
ignore_flag = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
if video_grid_thw is not None:
grid_thw = video_grid_thw
else:
grid_thw = image_grid_thw
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw)
vit_embeds = vit_embeds[image_flags == 1]
vit_embeds_ori = vit_embeds_ori[image_flags == 1]
vit_batch_size = image_flags.sum().item()
log_dict_keys = [
"text_loss", "text_acc1",
]
log_dict = {k: torch.tensor(0.0, device=self.device) for k in log_dict_keys}
return_feature_scale = True
B, N, C = input_embeds.shape
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
# ignore_flag = False
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}', force=True)
n_token = selected.sum()
if n_token > vit_embeds.shape[0]:
selected = selected.view(-1, selected.shape[-1]) # 确保是 [B, N] 形状
batch_size = selected.shape[0]
max_visual_tokens = vit_embeds.shape[0] // batch_size # 每个批次可用的视觉特征数量
for i in range(batch_size):
# 获取当前批次中的图像标记位置
curr_selected = selected[i]
# 只保留前 max_visual_tokens 个标记位置
curr_indices = torch.where(curr_selected)[0][:max_visual_tokens]
# 更新选择标记
selected[i] = False
selected[i, curr_indices] = True
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
ignore_flag = True
# input_embeds = input_embeds.reshape(B, N, C)
visual_token_mask = (selected + (input_ids == self.img_start_token_id))
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
visual_token_mask=visual_token_mask,
generation_modality=generation_modality,
padding_type=padding_type, # or self.train_padding_type,
skip_lm_head=False, # imgen
return_feature_scale=return_feature_scale,
)
logits = outputs.logits # B, N, C
if labels is not None and loss_weight is not None:
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_weights = loss_weight[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none')
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_weights = shift_weights.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
shift_weights = shift_weights.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
shift_weights_sum = shift_weights.sum()
if loss_reduction_all_gather:
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG, group=self.group)
pred_ids = shift_logits.argmax(dim=-1)
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum()
log_dict.update({
"text_loss": ((loss * shift_weights).sum() / shift_weights_sum).detach(),
"text_acc1": pred_acc
})
loss = loss * shift_weights
loss = loss.sum() / shift_weights_sum
if ignore_flag:
loss = loss * 0.0
elif labels is not None:
# To reduce gpu memory, remove the image parts of the logits and labels
shift_selected = (input_ids == self.img_context_token_id)[..., :-1]
shift_logits = logits[..., :-1, :][~shift_selected]
shift_labels = labels[..., 1:][~shift_selected]
# Shift so that tokens < n predict n
# shift_logits = logits[..., :-1, :].contiguous()
# shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
pred_ids = shift_logits.argmax(dim=-1)
pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum()
log_dict.update({
"text_loss": loss.mean().detach(),
"text_acc1": pred_acc
})
if ignore_flag:
loss = loss * 0.0
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
if return_feature_scale:
log_dict["feature_scale"] = {
"image": outputs.feature_scale[0],
"text": outputs.feature_scale[1],
}
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
log_dict=log_dict
)
def extract_feature(self, pixel_values, grid_thw=None):
if grid_thw is not None:
grid_thw = grid_thw.to(pixel_values.device)
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True,
grid_thw=grid_thw
).last_hidden_state
vit_embeds = pixel_shuffle_v2(vit_embeds, scale_factor=self.downsample_ratio, patch_aspect_ratio=self.patch_aspect_ratio)
vit_embeds_after_mlp = self.mlp1(vit_embeds)
return vit_embeds_after_mlp, vit_embeds
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, num_scales: list = [2],
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
IMG_LINE_BREAK_TOKEN='<IMG_LINE_BREAK>', IMG_FRAME_BREAK_TOKEN='<IMG_FRAME_BREAK>',
anyres_image_size=True,
verbose=False,
):
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' * len(num_scales) + question
if num_patches_list is None:
assert not anyres_image_size, "Please provide `num_patches_list` when anyres_image_size is True."
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or anyres_image_size or len(pixel_values) == sum(num_patches_list)
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
self.img_start_token_id = img_start_token_id
self.img_line_break_token_id = tokenizer.convert_tokens_to_ids(IMG_LINE_BREAK_TOKEN)
self.img_frame_break_token_id = tokenizer.convert_tokens_to_ids(IMG_FRAME_BREAK_TOKEN)
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
if anyres_image_size:
merge_size = int(1.0 / self.downsample_ratio)
for image_idx in range(len(num_scales)):
num_scales_prev = sum(num_scales[:image_idx])
num_scale = num_scales[image_idx]
_num_image_token_list = num_patches_list[num_scales_prev:num_scales_prev + num_scale]
image_tokens = f"{IMG_START_TOKEN}"
for i in range(len(_num_image_token_list)):
_image_tokens = ""
t, h, w = _num_image_token_list[i][0], _num_image_token_list[i][1] // merge_size, _num_image_token_list[i][2] // merge_size
for _ in range(t):
for _ in range(h):
_image_tokens += f"{IMG_CONTEXT_TOKEN * w}{IMG_LINE_BREAK_TOKEN}"
_image_tokens += f"{IMG_FRAME_BREAK_TOKEN}"
image_tokens += _image_tokens
image_tokens += f"{IMG_END_TOKEN}"
query = query.replace('<image>', image_tokens, 1)
else:
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=num_patches_list,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep)[0].strip()
# fix for InternLM2-base (textvqa)
response = response.replace("<|im_end|", "")
response = response.replace("<|im_end", "")
response = response.replace("<|im", "")
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(IMG_LINE_BREAK_TOKEN, '')
query_to_print = query_to_print.replace(IMG_FRAME_BREAK_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
grid_thw = image_grid_thw
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
B, N, C = input_embeds.shape
# input_embeds = input_embeds.reshape(B * N, C)
# input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id) # B, N
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
# input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
input_embeds = self.replace_img_special_tokens(input_embeds, input_ids)
selected = None
# input_embeds = self.replace_special_tokens(input_embeds, input_ids)
visual_token_mask = selected + (input_ids == self.img_start_token_id) if selected is not None else None
position_ids = None
generate_kwargs['position_ids'] = position_ids
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
# return_dict=return_dict,
use_cache=True,
visual_token_mask=visual_token_mask,
**generate_kwargs,
)
return outputs
def pixel_shuffle_v2(x, scale_factor=0.5, patch_aspect_ratio=1.0):
# input shape: N, L, C or N, H, W, C
# output shape: N, L * (scale_factor ** 2), C / (scale_factor ** 2)
if x.ndim == 3:
n, l, c = x.size()
h = w = int(l ** 0.5)
# N, L, C --> N, H, W, C
x = x.reshape(n, h, w, c)
n, h, w, c = x.size()
h_scale_factor = scale_factor * (patch_aspect_ratio ** 0.5)
w_scale_factor = scale_factor / (patch_aspect_ratio ** 0.5)
# N, H, W, C --> N, H, W * w_scale_factor, C // w_scale_factor
x = x.reshape(n, h, int(w * w_scale_factor), int(c / w_scale_factor))
# N, H, W * w_scale_factor, C // w_scale_factor --> N, W * w_scale_factor, H, C // w_scale_factor
x = x.permute(0, 2, 1, 3).contiguous()
# N, W * w_scale_factor, H, C // w_scale_factor --> N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor)
x = x.reshape(n, int(w * w_scale_factor), int(h * h_scale_factor), int(c / (w_scale_factor * h_scale_factor)))
# N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor)
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, L * (scale_factor ** 2), C // (scale_factor ** 2)
x = x.reshape(n, int(h * h_scale_factor * w * w_scale_factor), int(c / (h_scale_factor * w_scale_factor)))
return x
|