metadata
			license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
model-index:
  - name: NeuralSynthesis-7B-v0.1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 73.04
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralSynthesis-7B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 89.18
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralSynthesis-7B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralSynthesis-7B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 78.15
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralSynthesis-7B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 85.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralSynthesis-7B-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.81
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralSynthesis-7B-v0.1
          name: Open LLM Leaderboard
language:
  - en
  - es
NeuralSynthesis-7B-v0.1
NeuralSynthesis-7B-v0.1 is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
  - model: MiniMoog/Mergerix-7b-v0.3
  - model: automerger/Ognoexperiment27Multi_verse_model-7B
  - model: AurelPx/Percival_01-7b-slerp
  - model: automerger/YamshadowExperiment28-7B
merge_method: model_stock
base_model: automerger/YamshadowExperiment28-7B
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralSynthesis-7B-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 76.80 | 
| AI2 Reasoning Challenge (25-Shot) | 73.04 | 
| HellaSwag (10-Shot) | 89.18 | 
| MMLU (5-Shot) | 64.37 | 
| TruthfulQA (0-shot) | 78.15 | 
| Winogrande (5-shot) | 85.24 | 
| GSM8k (5-shot) | 70.81 | 

