File size: 10,678 Bytes
9f6787b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import transformers
from transformers import ( 
    AutoConfig, AutoModel,
    AutoModelForCausalLM, WhisperModel)

from configs import VLFMConfig, LossFunction, LossConfig,  build_tokenizer
from projector import VLFMProjector
from constants import IGNORE_INDEX, SPEECH_TOKEN_INDEX

from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput 
from typing import Optional, Tuple, List, Union


class VLFMModel(transformers.LlamaPreTrainedModel):
    config_class = VLFMConfig
    def __init__(self, config, torch_dtype=torch.bfloat16):
        super(VLFMModel, self).__init__(config) 

        whisper = WhisperModel.from_pretrained(config.audio_model_id, 
                                               torch_dtype=torch_dtype,)

        self.encoder = whisper.encoder
        self.projector = VLFMProjector(config)
        self.language_model = AutoModelForCausalLM.from_pretrained(config.text_model_id, 
                                                                   torch_dtype=torch_dtype)

        self._train_module(self.encoder, False)
        self._train_module(self.language_model, False)
        self._train_module(self.projector, True)

        self.encoder.to(dtype=torch_dtype)
        self.language_model.to(dtype=torch_dtype)
        self.projector.to(dtype=torch_dtype)   

        self.tokenizer, self.audio_token_id = build_tokenizer(config.text_model_id, config.tokenizer_padding_side)
        
        self.tokenizer_model_max_length = self.tokenizer.model_max_length
        self._resize_token_embeddings(self.tokenizer)
        self.get_input_embeddings().to(dtype=self.language_model.dtype)
        if hasattr(self.language_model, "get_output_embeddings") and self.language_model.get_output_embeddings() is not None:
            self.language_model.get_output_embeddings().to(dtype=self.language_model.dtype)

        self.loss_config = LossConfig(LossFunction.KL_Divergence)
        #self.loss_config.loss_function = LossFunction.KL_Divergence

        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, new_emb):
        return self.language_model.set_input_embeddings(new_emb)

    @property
    def embed_tokens(self):
        return self.language_model.get_input_embeddings()

    def _train_module(self, module, trainable: bool):
        for param in module.parameters():
            param.requires_grad= trainable
    
    def _audio_iter(self, audio_batch_size):
        audio_index = 0 
        for i_b, count in enumerate(audio_batch_size.view(-1).tolist()):
            for _ in range(int(count)):
                yield i_b, audio_index
                audio_index += 1

    def _resize_token_embeddings(self, tokenizer, pad_to_multiple_of=None):

        model_embeds = self.language_model.resize_token_embeddings(len(tokenizer))
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def _encode_speech(self, audio_values):
        with torch.no_grad():
            encoder_outputs = self.encoder(audio_values, output_hidden_states=False)
            audio_embeds = encoder_outputs.last_hidden_state
        downsampled_embeds = self.projector(audio_embeds) #(B, T, D)
        #print(f"Shape of projector output: {downsampled_embeds.shape}")
        return downsampled_embeds
    
    def _splice_chunks(self, text_embeds, audio_embeds, audio_token_start_idx, audio_token_len, audio_batch_size):
        D = text_embeds.size(-1)
        for i_b, i_chunk in self._audio_iter(audio_batch_size):
            start = int(audio_token_start_idx[i_chunk].item())
            span = int(audio_token_len[i_chunk].item())
            a = audio_embeds[i_chunk]
            Ta = a.size(0)
            use = min(Ta, span)
            text_embeds[i_b, start:start+use, :] = a[:use].to(text_embeds.dtype)
            
    
    def _compute_kl_loss(
        self,
        *,
        student_logits: torch.Tensor,
        labels: torch.Tensor,
        alt_input_ids: torch.Tensor,
        alt_attention_mask: torch.Tensor,
        alt_labels: torch.Tensor,
        past_key_values=None,
        **kwargs,
    ):
        lm_was_training = self.language_model.training
        self.language_model.eval()
        with torch.no_grad():
            alt_input_embeds = self.language_model.get_input_embeddings()(alt_input_ids)
            teacher_out = self.language_model(
                inputs_embeds=alt_input_embeds,
                attention_mask=alt_attention_mask,
                use_cache=False,
                return_dict=True,
                past_key_values=past_key_values,
            )
            teacher_logits = teacher_out.logits
        if lm_was_training:
            self.language_model.train()

        T = self.loss_config.kl_temperature
        student = F.log_softmax(student_logits[labels != IGNORE_INDEX] / T, dim=-1)
        teacher = F.softmax(teacher_logits[alt_labels != IGNORE_INDEX] / T, dim=-1)
        kl = F.kl_div(student, teacher, reduction="batchmean") 
        return kl
    


    def forward(
            self, 
            input_ids, 
            attention_mask,
            labels=None, 
            *,
            input_features=None, 
            audio_token_start_idx = None, 
            audio_token_len = None,        
            audio_batch_size = None,       
            alt_input_ids = None,
            alt_attention_mask = None,
            alt_labels = None,
            return_dict = True,
            **kwargs):
        tok = self.language_model.get_input_embeddings()
        text_embeds = tok(input_ids)

        if input_features is not None and audio_token_start_idx is not None:
            audio_embeds = self._encode_speech(input_features)
            self._splice_chunks(
                text_embeds,
                audio_embeds,
                audio_token_start_idx,
                audio_token_len, 
                audio_batch_size
            )
        
        out = self.language_model(
            inputs_embeds=text_embeds, 
            attention_mask=attention_mask,
            labels =labels,
            return_dict=True,
            use_cache = True,
            )
        
        logits = out.logits
        ce_loss = out.loss

        alpha = self.loss_config.ce_weight 
        alpha = self.loss_config.ce_weight 

        kl = None
        if (
            self.training
            and alt_input_ids is not None
            and alt_attention_mask is not None
            and alt_labels is not None
        ):

            kl = self._compute_kl_loss( 
                student_logits=logits,
                labels=labels,
                alt_input_ids=alt_input_ids,
                alt_attention_mask=alt_attention_mask,  
                alt_labels=alt_labels,
                past_key_values=None,
                )
                
            total_loss = alpha * ce_loss + (1 - alpha) * kl
        else:
            total_loss = ce_loss

        return {
            "loss": total_loss,
            "loss_ce": ce_loss.detach() if ce_loss is not None else None,
            "loss_kl": kl.detach() if kl is not None else None,
            "logits": logits,}


        ''' if (
            self.training
            and self.loss_config.loss_function == LossFunction.KL_Divergence
            and alt_input_ids is not None
            and alt_attention_mask is not None
            and alt_labels is not None
        
        ):
            kl = self._compute_kl_loss( 
                student_logits=logits,
                labels=labels,
                alt_input_ids=alt_input_ids,
                alt_attention_mask=alt_attention_mask,  
                alt_labels=alt_labels,
               past_key_values=None,)

            return {
                "loss": kl, 
                "loss_ce": (ce_loss.detach() if ce_loss is not None else None), 
                logits: logits}
        
        if return_dict:
            return out 
        return (ce_loss, logits) ''' 
    
    def _prepare_inputs_embeds(
        self,
        input_ids,           
        attention_mask,
        *,
        input_features = None,      
        audio_token_start_idx = None,  
        audio_token_len = None,         
        audio_batch_size= None,       
    ):
        """
        Returns:
          inputs_embeds: [B, L, D] with audio spliced in
          attention_mask: [B, L] (unchanged)
        """
        tok = self.language_model.get_input_embeddings()
        inputs_embeds = tok(input_ids)  # [B, L, D]

        if input_features is not None and audio_token_start_idx is not None:
            # Normalize shapes: treat "one audio per sample" as N_chunks == B
            feats = input_features
            if feats.dim() == 3 and feats.size(0) == input_ids.size(0):
                audio_batch_size = torch.ones(input_ids.size(0), dtype=torch.long, device=input_ids.device)
            assert audio_batch_size is not None, "audio_batch_size required when splicing audio."

            # Encode + project, then splice
            audio_embeds = self._encode_audio(feats)  # [N_chunks, T_audio, D]
            self._splice_chunks(
                text_embeds=inputs_embeds,
                audio_embeds=audio_embeds,
                audio_token_start_idx=audio_token_start_idx,
                audio_token_len=audio_token_len,
                audio_batch_size=audio_batch_size,
            )

        return inputs_embeds, attention_mask
    
    @torch.no_grad()
    def generate(
        self,
        input_ids,                 # [B, L]
        attention_mask,            # [B, L]
        *,
        input_features,
        audio_token_start_idx= None,
        audio_token_len= None,
        audio_batch_size = None,
        **gen_kwargs,
    ):
        """
        Build spliced embeddings and call the base LM's generate"""
        self.eval()
        inputs_embeds, attn_mask = self._prepare_inputs_embeds(
            input_ids=input_ids,
            attention_mask=attention_mask,
            input_features=input_features,
            audio_token_start_idx=audio_token_start_idx,
            audio_token_len=audio_token_len,
            audio_batch_size=audio_batch_size,
        )
        return self.language_model.generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attn_mask,
            **gen_kwargs,
        )


AutoConfig.register("babs-vlfm", VLFMConfig)
AutoModel.register(VLFMConfig, VLFMModel)