Guilherme34 temi commited on
Commit
9f6787b
·
verified ·
0 Parent(s):

Duplicate from babs/vlfm-v3-3B

Browse files

Co-authored-by: Temi <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # VLFM Model: Custom audio+text model with tokenizer (expanded with <|audio|>), Whisper feature extractor, and processor.
chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "VLFMModel"
4
+ ],
5
+ "audio_config": {
6
+ "_name_or_path": "openai/whisper-large-v3",
7
+ "activation_dropout": 0.0,
8
+ "activation_function": "gelu",
9
+ "add_cross_attention": false,
10
+ "apply_spec_augment": false,
11
+ "architectures": [
12
+ "WhisperForConditionalGeneration"
13
+ ],
14
+ "attention_dropout": 0.0,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": [
17
+ 220,
18
+ 50257
19
+ ],
20
+ "bos_token_id": 50257,
21
+ "chunk_size_feed_forward": 0,
22
+ "classifier_proj_size": 256,
23
+ "cross_attention_hidden_size": null,
24
+ "d_model": 1280,
25
+ "decoder_attention_heads": 20,
26
+ "decoder_ffn_dim": 5120,
27
+ "decoder_layerdrop": 0.0,
28
+ "decoder_layers": 32,
29
+ "decoder_start_token_id": 50258,
30
+ "diversity_penalty": 0.0,
31
+ "do_sample": false,
32
+ "dropout": 0.0,
33
+ "dtype": "float16",
34
+ "early_stopping": false,
35
+ "encoder_attention_heads": 20,
36
+ "encoder_ffn_dim": 5120,
37
+ "encoder_layerdrop": 0.0,
38
+ "encoder_layers": 32,
39
+ "encoder_no_repeat_ngram_size": 0,
40
+ "eos_token_id": 50257,
41
+ "exponential_decay_length_penalty": null,
42
+ "finetuning_task": null,
43
+ "forced_bos_token_id": null,
44
+ "forced_eos_token_id": null,
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "init_std": 0.02,
50
+ "is_decoder": false,
51
+ "is_encoder_decoder": true,
52
+ "label2id": {
53
+ "LABEL_0": 0,
54
+ "LABEL_1": 1
55
+ },
56
+ "length_penalty": 1.0,
57
+ "mask_feature_length": 10,
58
+ "mask_feature_min_masks": 0,
59
+ "mask_feature_prob": 0.0,
60
+ "mask_time_length": 10,
61
+ "mask_time_min_masks": 2,
62
+ "mask_time_prob": 0.05,
63
+ "max_length": 448,
64
+ "max_source_positions": 1500,
65
+ "max_target_positions": 448,
66
+ "median_filter_width": 7,
67
+ "min_length": 0,
68
+ "model_type": "whisper",
69
+ "no_repeat_ngram_size": 0,
70
+ "num_beam_groups": 1,
71
+ "num_beams": 1,
72
+ "num_hidden_layers": 32,
73
+ "num_mel_bins": 128,
74
+ "num_return_sequences": 1,
75
+ "output_attentions": false,
76
+ "output_hidden_states": false,
77
+ "output_scores": false,
78
+ "pad_token_id": 50256,
79
+ "prefix": null,
80
+ "problem_type": null,
81
+ "pruned_heads": {},
82
+ "remove_invalid_values": false,
83
+ "repetition_penalty": 1.0,
84
+ "return_dict": true,
85
+ "return_dict_in_generate": false,
86
+ "scale_embedding": false,
87
+ "sep_token_id": null,
88
+ "suppress_tokens": null,
89
+ "task_specific_params": null,
90
+ "temperature": 1.0,
91
+ "tf_legacy_loss": false,
92
+ "tie_encoder_decoder": false,
93
+ "tie_word_embeddings": true,
94
+ "tokenizer_class": null,
95
+ "top_k": 50,
96
+ "top_p": 1.0,
97
+ "torchscript": false,
98
+ "typical_p": 1.0,
99
+ "use_bfloat16": false,
100
+ "use_cache": true,
101
+ "use_weighted_layer_sum": false,
102
+ "vocab_size": 51866
103
+ },
104
+ "audio_model_id": "openai/whisper-large-v3",
105
+ "audio_padding": "longest",
106
+ "auto_map": {
107
+ "AutoConfig": "configs.VLFMConfig",
108
+ "AutoModel": "model.VLFMModel"
109
+ },
110
+ "ds_rate": 2,
111
+ "dtype": "bfloat16",
112
+ "ignore_index": -100,
113
+ "llm_hidden_size": 3072,
114
+ "max_seconds": 30,
115
+ "model_type": "babs-vlfm",
116
+ "proj_hidden_dim": 4096,
117
+ "projector_act": "swiglu",
118
+ "projector_ln_mid": true,
119
+ "rms_norm_eps": 1e-06,
120
+ "rms_norm_init_factor": 0.4,
121
+ "speech_encoder_hidden_size": 1280,
122
+ "stack_factor": 8,
123
+ "text_config": {
124
+ "_name_or_path": "meta-llama/Llama-3.2-3B-Instruct",
125
+ "add_cross_attention": false,
126
+ "architectures": [
127
+ "LlamaForCausalLM"
128
+ ],
129
+ "attention_bias": false,
130
+ "attention_dropout": 0.0,
131
+ "bad_words_ids": null,
132
+ "begin_suppress_tokens": null,
133
+ "bos_token_id": 128000,
134
+ "chunk_size_feed_forward": 0,
135
+ "cross_attention_hidden_size": null,
136
+ "decoder_start_token_id": null,
137
+ "diversity_penalty": 0.0,
138
+ "do_sample": false,
139
+ "dtype": "bfloat16",
140
+ "early_stopping": false,
141
+ "encoder_no_repeat_ngram_size": 0,
142
+ "eos_token_id": [
143
+ 128001,
144
+ 128008,
145
+ 128009
146
+ ],
147
+ "exponential_decay_length_penalty": null,
148
+ "finetuning_task": null,
149
+ "forced_bos_token_id": null,
150
+ "forced_eos_token_id": null,
151
+ "head_dim": 128,
152
+ "hidden_act": "silu",
153
+ "hidden_size": 3072,
154
+ "id2label": {
155
+ "0": "LABEL_0",
156
+ "1": "LABEL_1"
157
+ },
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 8192,
160
+ "is_decoder": false,
161
+ "is_encoder_decoder": false,
162
+ "label2id": {
163
+ "LABEL_0": 0,
164
+ "LABEL_1": 1
165
+ },
166
+ "length_penalty": 1.0,
167
+ "max_length": 20,
168
+ "max_position_embeddings": 131072,
169
+ "min_length": 0,
170
+ "mlp_bias": false,
171
+ "model_type": "llama",
172
+ "no_repeat_ngram_size": 0,
173
+ "num_attention_heads": 24,
174
+ "num_beam_groups": 1,
175
+ "num_beams": 1,
176
+ "num_hidden_layers": 28,
177
+ "num_key_value_heads": 8,
178
+ "num_return_sequences": 1,
179
+ "output_attentions": false,
180
+ "output_hidden_states": false,
181
+ "output_scores": false,
182
+ "pad_token_id": null,
183
+ "prefix": null,
184
+ "pretraining_tp": 1,
185
+ "problem_type": null,
186
+ "pruned_heads": {},
187
+ "remove_invalid_values": false,
188
+ "repetition_penalty": 1.0,
189
+ "return_dict": true,
190
+ "return_dict_in_generate": false,
191
+ "rms_norm_eps": 1e-05,
192
+ "rope_scaling": {
193
+ "factor": 32.0,
194
+ "high_freq_factor": 4.0,
195
+ "low_freq_factor": 1.0,
196
+ "original_max_position_embeddings": 8192,
197
+ "rope_type": "llama3"
198
+ },
199
+ "rope_theta": 500000.0,
200
+ "sep_token_id": null,
201
+ "suppress_tokens": null,
202
+ "task_specific_params": null,
203
+ "temperature": 1.0,
204
+ "tf_legacy_loss": false,
205
+ "tie_encoder_decoder": false,
206
+ "tie_word_embeddings": true,
207
+ "tokenizer_class": null,
208
+ "top_k": 50,
209
+ "top_p": 1.0,
210
+ "torchscript": false,
211
+ "typical_p": 1.0,
212
+ "use_bfloat16": false,
213
+ "use_cache": true,
214
+ "vocab_size": 128256
215
+ },
216
+ "text_model_id": "meta-llama/Llama-3.2-3B-Instruct",
217
+ "tokenizer_padding_side": "right",
218
+ "transformers_version": "4.57.0",
219
+ "vocab_size": 128257
220
+ }
configs.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ import dataclasses
3
+ from typing import Optional
4
+
5
+ import transformers
6
+ from transformers import WhisperConfig, AutoConfig
7
+ from transformers import AutoTokenizer
8
+ from constants import IGNORE_INDEX
9
+
10
+ class VLFMConfig(transformers.PretrainedConfig):
11
+ model_type = "babs-vlfm"
12
+
13
+ def __init__(
14
+ self,
15
+ audio_model_id: Optional[str] = None,
16
+ text_model_id: Optional[str] = None,
17
+ *,
18
+ ignore_index: int = IGNORE_INDEX,
19
+ stack_factor: int = 8,
20
+ encoder_ds_factor: int = 2,
21
+ projector_act: str = "swiglu",
22
+ projector_ln_mid: bool = True,
23
+ max_audio_seconds: int = 30,
24
+ audio_padding: str = "longest",
25
+ tokenizer_padding_side: str = "right",
26
+ hidden_size: Optional[int] = 4096,
27
+ speech_encoder_hidden_size: Optional[int] = None,
28
+ vocab_size: Optional[int] = None,
29
+ **kwargs,
30
+ ):
31
+ super().__init__(**kwargs)
32
+
33
+ self.audio_model_id = audio_model_id
34
+ self.text_model_id = text_model_id
35
+
36
+ self.ignore_index = ignore_index
37
+ self.stack_factor = stack_factor
38
+ self.ds_rate = encoder_ds_factor
39
+ self.projector_act = projector_act
40
+ self.projector_ln_mid = projector_ln_mid
41
+ self.proj_hidden_dim = hidden_size
42
+
43
+ self.max_seconds = max_audio_seconds
44
+ self.audio_padding = audio_padding
45
+ self.tokenizer_padding_side = tokenizer_padding_side
46
+ self.audio_config = None
47
+ self.text_config = None
48
+
49
+ if audio_model_id:
50
+ self.audio_config = WhisperConfig.from_pretrained(audio_model_id)
51
+ self.speech_encoder_hidden_size = self.audio_config.hidden_size
52
+ #print(f"audio_hidden_size: {self.speech_encoder_hidden_size}")
53
+ else:
54
+ self.speech_encoder_hidden_size = speech_encoder_hidden_size
55
+
56
+ if text_model_id:
57
+ self.text_config = AutoConfig.from_pretrained(text_model_id)
58
+ self.llm_hidden_size = self.text_config.hidden_size
59
+ #self.llm_hidden_size = 2048
60
+ #print(f"LLM hidden size: {self.llm_hidden_size}")
61
+ self.vocab_size = getattr(self.text_config, "vocab_size", vocab_size)
62
+ else:
63
+ self.llm_hidden_size =hidden_size
64
+ self.vocab_size = vocab_size
65
+
66
+ self.rms_norm_eps = 1e-6
67
+ self.rms_norm_init_factor = 0.4
68
+
69
+
70
+ class LossFunction(str, Enum):
71
+ CrossEntropy = "ce"
72
+ KL_Divergence = "kl"
73
+
74
+
75
+ @dataclasses.dataclass
76
+ class LossConfig:
77
+ loss_function: LossFunction = LossFunction.CrossEntropy
78
+ kl_temperature: float = 2.0
79
+ ce_weight = 0.5
80
+
81
+ @property
82
+ def requires_alt_fields(self) -> bool:
83
+ return self.loss_function == LossFunction.KL_Divergence
84
+
85
+ AUDIO_PLACEHOLDER = "<|audio|>"
86
+
87
+ def build_tokenizer(text_model_id: str, padding_side: str = "right"):
88
+ tok = AutoTokenizer.from_pretrained(text_model_id)
89
+ if tok.pad_token is None:
90
+ tok.pad_token = tok.eos_token
91
+ tok.padding_side = padding_side
92
+ # Add audio placeholder if missing
93
+ if AUDIO_PLACEHOLDER not in tok.get_vocab():
94
+ tok.add_special_tokens({"additional_special_tokens": [AUDIO_PLACEHOLDER]})
95
+ audio_token_id = tok.convert_tokens_to_ids(AUDIO_PLACEHOLDER)
96
+ return tok, audio_token_id
configuration_vlfm.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+ import dataclasses
3
+ from typing import Optional
4
+
5
+ import transformers
6
+ from transformers import WhisperConfig, AutoConfig
7
+ from transformers import AutoTokenizer
8
+ from constants import IGNORE_INDEX
9
+
10
+ class VLFMConfig(transformers.PretrainedConfig):
11
+ model_type = "babs-vlfm"
12
+
13
+ def __init__(
14
+ self,
15
+ audio_model_id: Optional[str] = None,
16
+ text_model_id: Optional[str] = None,
17
+ *,
18
+ ignore_index: int = IGNORE_INDEX,
19
+ stack_factor: int = 8,
20
+ encoder_ds_factor: int = 2,
21
+ projector_act: str = "swiglu",
22
+ projector_ln_mid: bool = True,
23
+ max_audio_seconds: int = 30,
24
+ audio_padding: str = "longest",
25
+ tokenizer_padding_side: str = "right",
26
+ hidden_size: Optional[int] = 4096,
27
+ speech_encoder_hidden_size: Optional[int] = None,
28
+ vocab_size: Optional[int] = None,
29
+ **kwargs,
30
+ ):
31
+ super().__init__(**kwargs)
32
+
33
+ self.audio_model_id = audio_model_id
34
+ self.text_model_id = text_model_id
35
+
36
+ self.ignore_index = ignore_index
37
+ self.stack_factor = stack_factor
38
+ self.ds_rate = encoder_ds_factor
39
+ self.projector_act = projector_act
40
+ self.projector_ln_mid = projector_ln_mid
41
+ self.proj_hidden_dim = hidden_size
42
+
43
+ self.max_seconds = max_audio_seconds
44
+ self.audio_padding = audio_padding
45
+ self.tokenizer_padding_side = tokenizer_padding_side
46
+ self.audio_config = None
47
+ self.text_config = None
48
+
49
+ if audio_model_id:
50
+ self.audio_config = WhisperConfig.from_pretrained(audio_model_id)
51
+ self.speech_encoder_hidden_size = self.audio_config.hidden_size
52
+ #print(f"audio_hidden_size: {self.speech_encoder_hidden_size}")
53
+ else:
54
+ self.speech_encoder_hidden_size = speech_encoder_hidden_size
55
+
56
+ if text_model_id:
57
+ self.text_config = AutoConfig.from_pretrained(text_model_id)
58
+ self.llm_hidden_size = self.text_config.hidden_size
59
+ #self.llm_hidden_size = 2048
60
+ #print(f"LLM hidden size: {self.llm_hidden_size}")
61
+ self.vocab_size = getattr(self.text_config, "vocab_size", vocab_size)
62
+ else:
63
+ self.llm_hidden_size =hidden_size
64
+ self.vocab_size = vocab_size
65
+
66
+ self.rms_norm_eps = 1e-6
67
+ self.rms_norm_init_factor = 0.4
68
+
69
+
70
+ class LossFunction(str, Enum):
71
+ CrossEntropy = "ce"
72
+ KL_Divergence = "kl"
73
+
74
+
75
+ @dataclasses.dataclass
76
+ class LossConfig:
77
+ loss_function: LossFunction = LossFunction.CrossEntropy
78
+ kl_temperature: float = 2.0
79
+ ce_weight = 0.5
80
+
81
+ @property
82
+ def requires_alt_fields(self) -> bool:
83
+ return self.loss_function == LossFunction.KL_Divergence
84
+
85
+ AUDIO_PLACEHOLDER = "<|audio|>"
86
+
87
+ def build_tokenizer(text_model_id: str, padding_side: str = "right"):
88
+ tok = AutoTokenizer.from_pretrained(text_model_id)
89
+ if tok.pad_token is None:
90
+ tok.pad_token = tok.eos_token
91
+ tok.padding_side = padding_side
92
+ # Add audio placeholder if missing
93
+ if AUDIO_PLACEHOLDER not in tok.get_vocab():
94
+ tok.add_special_tokens({"additional_special_tokens": [AUDIO_PLACEHOLDER]})
95
+ audio_token_id = tok.convert_tokens_to_ids(AUDIO_PLACEHOLDER)
96
+ return tok, audio_token_id
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e93644740750f5cdb4491e14d1c969fb1d80d625420bbcb26d40c248204b2c6c
3
+ size 1466959128
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:199e655b2ca2be11aca16c381b0b6c609d424836b0d1c88ad0b5ab582e5ef032
3
+ size 1996051464
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8353697e6d2afbcfdf0b6b6cc2e836dc0500990cb6e6cf18f476c7e1b827ff61
3
+ size 1963056200
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f770e0e318ae60759aaeed07112f36ac0ad26f4f36677c27d388da36247a401e
3
+ size 1963068792
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f1ab0807a4f532670541b0bc04def7b8be97871e857ae98c0cb4408a2e2b0f8
3
+ size 503362456
model.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import transformers
5
+ from transformers import (
6
+ AutoConfig, AutoModel,
7
+ AutoModelForCausalLM, WhisperModel)
8
+
9
+ from configs import VLFMConfig, LossFunction, LossConfig, build_tokenizer
10
+ from projector import VLFMProjector
11
+ from constants import IGNORE_INDEX, SPEECH_TOKEN_INDEX
12
+
13
+ from transformers.modeling_outputs import CausalLMOutputWithPast
14
+ from transformers.generation.utils import GenerateOutput
15
+ from typing import Optional, Tuple, List, Union
16
+
17
+
18
+ class VLFMModel(transformers.LlamaPreTrainedModel):
19
+ config_class = VLFMConfig
20
+ def __init__(self, config, torch_dtype=torch.bfloat16):
21
+ super(VLFMModel, self).__init__(config)
22
+
23
+ whisper = WhisperModel.from_pretrained(config.audio_model_id,
24
+ torch_dtype=torch_dtype,)
25
+
26
+ self.encoder = whisper.encoder
27
+ self.projector = VLFMProjector(config)
28
+ self.language_model = AutoModelForCausalLM.from_pretrained(config.text_model_id,
29
+ torch_dtype=torch_dtype)
30
+
31
+ self._train_module(self.encoder, False)
32
+ self._train_module(self.language_model, False)
33
+ self._train_module(self.projector, True)
34
+
35
+ self.encoder.to(dtype=torch_dtype)
36
+ self.language_model.to(dtype=torch_dtype)
37
+ self.projector.to(dtype=torch_dtype)
38
+
39
+ self.tokenizer, self.audio_token_id = build_tokenizer(config.text_model_id, config.tokenizer_padding_side)
40
+
41
+ self.tokenizer_model_max_length = self.tokenizer.model_max_length
42
+ self._resize_token_embeddings(self.tokenizer)
43
+ self.get_input_embeddings().to(dtype=self.language_model.dtype)
44
+ if hasattr(self.language_model, "get_output_embeddings") and self.language_model.get_output_embeddings() is not None:
45
+ self.language_model.get_output_embeddings().to(dtype=self.language_model.dtype)
46
+
47
+ self.loss_config = LossConfig(LossFunction.KL_Divergence)
48
+ #self.loss_config.loss_function = LossFunction.KL_Divergence
49
+
50
+ self.post_init()
51
+
52
+ def get_input_embeddings(self):
53
+ return self.language_model.get_input_embeddings()
54
+
55
+ def set_input_embeddings(self, new_emb):
56
+ return self.language_model.set_input_embeddings(new_emb)
57
+
58
+ @property
59
+ def embed_tokens(self):
60
+ return self.language_model.get_input_embeddings()
61
+
62
+ def _train_module(self, module, trainable: bool):
63
+ for param in module.parameters():
64
+ param.requires_grad= trainable
65
+
66
+ def _audio_iter(self, audio_batch_size):
67
+ audio_index = 0
68
+ for i_b, count in enumerate(audio_batch_size.view(-1).tolist()):
69
+ for _ in range(int(count)):
70
+ yield i_b, audio_index
71
+ audio_index += 1
72
+
73
+ def _resize_token_embeddings(self, tokenizer, pad_to_multiple_of=None):
74
+
75
+ model_embeds = self.language_model.resize_token_embeddings(len(tokenizer))
76
+ self.config.vocab_size = model_embeds.num_embeddings
77
+ self.vocab_size = model_embeds.num_embeddings
78
+ return model_embeds
79
+
80
+ def _encode_speech(self, audio_values):
81
+ with torch.no_grad():
82
+ encoder_outputs = self.encoder(audio_values, output_hidden_states=False)
83
+ audio_embeds = encoder_outputs.last_hidden_state
84
+ downsampled_embeds = self.projector(audio_embeds) #(B, T, D)
85
+ #print(f"Shape of projector output: {downsampled_embeds.shape}")
86
+ return downsampled_embeds
87
+
88
+ def _splice_chunks(self, text_embeds, audio_embeds, audio_token_start_idx, audio_token_len, audio_batch_size):
89
+ D = text_embeds.size(-1)
90
+ for i_b, i_chunk in self._audio_iter(audio_batch_size):
91
+ start = int(audio_token_start_idx[i_chunk].item())
92
+ span = int(audio_token_len[i_chunk].item())
93
+ a = audio_embeds[i_chunk]
94
+ Ta = a.size(0)
95
+ use = min(Ta, span)
96
+ text_embeds[i_b, start:start+use, :] = a[:use].to(text_embeds.dtype)
97
+
98
+
99
+ def _compute_kl_loss(
100
+ self,
101
+ *,
102
+ student_logits: torch.Tensor,
103
+ labels: torch.Tensor,
104
+ alt_input_ids: torch.Tensor,
105
+ alt_attention_mask: torch.Tensor,
106
+ alt_labels: torch.Tensor,
107
+ past_key_values=None,
108
+ **kwargs,
109
+ ):
110
+ lm_was_training = self.language_model.training
111
+ self.language_model.eval()
112
+ with torch.no_grad():
113
+ alt_input_embeds = self.language_model.get_input_embeddings()(alt_input_ids)
114
+ teacher_out = self.language_model(
115
+ inputs_embeds=alt_input_embeds,
116
+ attention_mask=alt_attention_mask,
117
+ use_cache=False,
118
+ return_dict=True,
119
+ past_key_values=past_key_values,
120
+ )
121
+ teacher_logits = teacher_out.logits
122
+ if lm_was_training:
123
+ self.language_model.train()
124
+
125
+ T = self.loss_config.kl_temperature
126
+ student = F.log_softmax(student_logits[labels != IGNORE_INDEX] / T, dim=-1)
127
+ teacher = F.softmax(teacher_logits[alt_labels != IGNORE_INDEX] / T, dim=-1)
128
+ kl = F.kl_div(student, teacher, reduction="batchmean")
129
+ return kl
130
+
131
+
132
+
133
+ def forward(
134
+ self,
135
+ input_ids,
136
+ attention_mask,
137
+ labels=None,
138
+ *,
139
+ input_features=None,
140
+ audio_token_start_idx = None,
141
+ audio_token_len = None,
142
+ audio_batch_size = None,
143
+ alt_input_ids = None,
144
+ alt_attention_mask = None,
145
+ alt_labels = None,
146
+ return_dict = True,
147
+ **kwargs):
148
+ tok = self.language_model.get_input_embeddings()
149
+ text_embeds = tok(input_ids)
150
+
151
+ if input_features is not None and audio_token_start_idx is not None:
152
+ audio_embeds = self._encode_speech(input_features)
153
+ self._splice_chunks(
154
+ text_embeds,
155
+ audio_embeds,
156
+ audio_token_start_idx,
157
+ audio_token_len,
158
+ audio_batch_size
159
+ )
160
+
161
+ out = self.language_model(
162
+ inputs_embeds=text_embeds,
163
+ attention_mask=attention_mask,
164
+ labels =labels,
165
+ return_dict=True,
166
+ use_cache = True,
167
+ )
168
+
169
+ logits = out.logits
170
+ ce_loss = out.loss
171
+
172
+ alpha = self.loss_config.ce_weight
173
+ alpha = self.loss_config.ce_weight
174
+
175
+ kl = None
176
+ if (
177
+ self.training
178
+ and alt_input_ids is not None
179
+ and alt_attention_mask is not None
180
+ and alt_labels is not None
181
+ ):
182
+
183
+ kl = self._compute_kl_loss(
184
+ student_logits=logits,
185
+ labels=labels,
186
+ alt_input_ids=alt_input_ids,
187
+ alt_attention_mask=alt_attention_mask,
188
+ alt_labels=alt_labels,
189
+ past_key_values=None,
190
+ )
191
+
192
+ total_loss = alpha * ce_loss + (1 - alpha) * kl
193
+ else:
194
+ total_loss = ce_loss
195
+
196
+ return {
197
+ "loss": total_loss,
198
+ "loss_ce": ce_loss.detach() if ce_loss is not None else None,
199
+ "loss_kl": kl.detach() if kl is not None else None,
200
+ "logits": logits,}
201
+
202
+
203
+ ''' if (
204
+ self.training
205
+ and self.loss_config.loss_function == LossFunction.KL_Divergence
206
+ and alt_input_ids is not None
207
+ and alt_attention_mask is not None
208
+ and alt_labels is not None
209
+
210
+ ):
211
+ kl = self._compute_kl_loss(
212
+ student_logits=logits,
213
+ labels=labels,
214
+ alt_input_ids=alt_input_ids,
215
+ alt_attention_mask=alt_attention_mask,
216
+ alt_labels=alt_labels,
217
+ past_key_values=None,)
218
+
219
+ return {
220
+ "loss": kl,
221
+ "loss_ce": (ce_loss.detach() if ce_loss is not None else None),
222
+ logits: logits}
223
+
224
+ if return_dict:
225
+ return out
226
+ return (ce_loss, logits) '''
227
+
228
+ def _prepare_inputs_embeds(
229
+ self,
230
+ input_ids,
231
+ attention_mask,
232
+ *,
233
+ input_features = None,
234
+ audio_token_start_idx = None,
235
+ audio_token_len = None,
236
+ audio_batch_size= None,
237
+ ):
238
+ """
239
+ Returns:
240
+ inputs_embeds: [B, L, D] with audio spliced in
241
+ attention_mask: [B, L] (unchanged)
242
+ """
243
+ tok = self.language_model.get_input_embeddings()
244
+ inputs_embeds = tok(input_ids) # [B, L, D]
245
+
246
+ if input_features is not None and audio_token_start_idx is not None:
247
+ # Normalize shapes: treat "one audio per sample" as N_chunks == B
248
+ feats = input_features
249
+ if feats.dim() == 3 and feats.size(0) == input_ids.size(0):
250
+ audio_batch_size = torch.ones(input_ids.size(0), dtype=torch.long, device=input_ids.device)
251
+ assert audio_batch_size is not None, "audio_batch_size required when splicing audio."
252
+
253
+ # Encode + project, then splice
254
+ audio_embeds = self._encode_audio(feats) # [N_chunks, T_audio, D]
255
+ self._splice_chunks(
256
+ text_embeds=inputs_embeds,
257
+ audio_embeds=audio_embeds,
258
+ audio_token_start_idx=audio_token_start_idx,
259
+ audio_token_len=audio_token_len,
260
+ audio_batch_size=audio_batch_size,
261
+ )
262
+
263
+ return inputs_embeds, attention_mask
264
+
265
+ @torch.no_grad()
266
+ def generate(
267
+ self,
268
+ input_ids, # [B, L]
269
+ attention_mask, # [B, L]
270
+ *,
271
+ input_features,
272
+ audio_token_start_idx= None,
273
+ audio_token_len= None,
274
+ audio_batch_size = None,
275
+ **gen_kwargs,
276
+ ):
277
+ """
278
+ Build spliced embeddings and call the base LM's generate"""
279
+ self.eval()
280
+ inputs_embeds, attn_mask = self._prepare_inputs_embeds(
281
+ input_ids=input_ids,
282
+ attention_mask=attention_mask,
283
+ input_features=input_features,
284
+ audio_token_start_idx=audio_token_start_idx,
285
+ audio_token_len=audio_token_len,
286
+ audio_batch_size=audio_batch_size,
287
+ )
288
+ return self.language_model.generate(
289
+ inputs_embeds=inputs_embeds,
290
+ attention_mask=attn_mask,
291
+ **gen_kwargs,
292
+ )
293
+
294
+
295
+ AutoConfig.register("babs-vlfm", VLFMConfig)
296
+ AutoModel.register(VLFMConfig, VLFMModel)
model.safetensors.index.json ADDED
@@ -0,0 +1,753 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3946205184,
4
+ "total_size": 7892410368
5
+ },
6
+ "weight_map": {
7
+ "encoder.conv1.bias": "model-00001-of-00005.safetensors",
8
+ "encoder.conv1.weight": "model-00001-of-00005.safetensors",
9
+ "encoder.conv2.bias": "model-00001-of-00005.safetensors",
10
+ "encoder.conv2.weight": "model-00001-of-00005.safetensors",
11
+ "encoder.embed_positions.weight": "model-00001-of-00005.safetensors",
12
+ "encoder.layer_norm.bias": "model-00001-of-00005.safetensors",
13
+ "encoder.layer_norm.weight": "model-00001-of-00005.safetensors",
14
+ "encoder.layers.0.fc1.bias": "model-00001-of-00005.safetensors",
15
+ "encoder.layers.0.fc1.weight": "model-00001-of-00005.safetensors",
16
+ "encoder.layers.0.fc2.bias": "model-00001-of-00005.safetensors",
17
+ "encoder.layers.0.fc2.weight": "model-00001-of-00005.safetensors",
18
+ "encoder.layers.0.final_layer_norm.bias": "model-00001-of-00005.safetensors",
19
+ "encoder.layers.0.final_layer_norm.weight": "model-00001-of-00005.safetensors",
20
+ "encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
21
+ "encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
22
+ "encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
23
+ "encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
24
+ "encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
26
+ "encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
27
+ "encoder.layers.0.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
28
+ "encoder.layers.0.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
29
+ "encoder.layers.1.fc1.bias": "model-00001-of-00005.safetensors",
30
+ "encoder.layers.1.fc1.weight": "model-00001-of-00005.safetensors",
31
+ "encoder.layers.1.fc2.bias": "model-00001-of-00005.safetensors",
32
+ "encoder.layers.1.fc2.weight": "model-00001-of-00005.safetensors",
33
+ "encoder.layers.1.final_layer_norm.bias": "model-00001-of-00005.safetensors",
34
+ "encoder.layers.1.final_layer_norm.weight": "model-00001-of-00005.safetensors",
35
+ "encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
36
+ "encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
37
+ "encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
38
+ "encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
39
+ "encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
40
+ "encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
41
+ "encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
42
+ "encoder.layers.1.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
43
+ "encoder.layers.1.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
44
+ "encoder.layers.10.fc1.bias": "model-00001-of-00005.safetensors",
45
+ "encoder.layers.10.fc1.weight": "model-00001-of-00005.safetensors",
46
+ "encoder.layers.10.fc2.bias": "model-00001-of-00005.safetensors",
47
+ "encoder.layers.10.fc2.weight": "model-00001-of-00005.safetensors",
48
+ "encoder.layers.10.final_layer_norm.bias": "model-00001-of-00005.safetensors",
49
+ "encoder.layers.10.final_layer_norm.weight": "model-00001-of-00005.safetensors",
50
+ "encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
51
+ "encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
52
+ "encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
53
+ "encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
54
+ "encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
55
+ "encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
56
+ "encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
57
+ "encoder.layers.10.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
58
+ "encoder.layers.10.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
59
+ "encoder.layers.11.fc1.bias": "model-00001-of-00005.safetensors",
60
+ "encoder.layers.11.fc1.weight": "model-00001-of-00005.safetensors",
61
+ "encoder.layers.11.fc2.bias": "model-00001-of-00005.safetensors",
62
+ "encoder.layers.11.fc2.weight": "model-00001-of-00005.safetensors",
63
+ "encoder.layers.11.final_layer_norm.bias": "model-00001-of-00005.safetensors",
64
+ "encoder.layers.11.final_layer_norm.weight": "model-00001-of-00005.safetensors",
65
+ "encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
66
+ "encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
67
+ "encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
68
+ "encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
69
+ "encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
70
+ "encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
71
+ "encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
72
+ "encoder.layers.11.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
73
+ "encoder.layers.11.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
74
+ "encoder.layers.12.fc1.bias": "model-00001-of-00005.safetensors",
75
+ "encoder.layers.12.fc1.weight": "model-00001-of-00005.safetensors",
76
+ "encoder.layers.12.fc2.bias": "model-00001-of-00005.safetensors",
77
+ "encoder.layers.12.fc2.weight": "model-00001-of-00005.safetensors",
78
+ "encoder.layers.12.final_layer_norm.bias": "model-00001-of-00005.safetensors",
79
+ "encoder.layers.12.final_layer_norm.weight": "model-00001-of-00005.safetensors",
80
+ "encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
81
+ "encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
82
+ "encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
83
+ "encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
84
+ "encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
85
+ "encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
86
+ "encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
87
+ "encoder.layers.12.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
88
+ "encoder.layers.12.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
89
+ "encoder.layers.13.fc1.bias": "model-00001-of-00005.safetensors",
90
+ "encoder.layers.13.fc1.weight": "model-00001-of-00005.safetensors",
91
+ "encoder.layers.13.fc2.bias": "model-00001-of-00005.safetensors",
92
+ "encoder.layers.13.fc2.weight": "model-00001-of-00005.safetensors",
93
+ "encoder.layers.13.final_layer_norm.bias": "model-00001-of-00005.safetensors",
94
+ "encoder.layers.13.final_layer_norm.weight": "model-00001-of-00005.safetensors",
95
+ "encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
96
+ "encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
97
+ "encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
98
+ "encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
99
+ "encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
100
+ "encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
101
+ "encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
102
+ "encoder.layers.13.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
103
+ "encoder.layers.13.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
104
+ "encoder.layers.14.fc1.bias": "model-00001-of-00005.safetensors",
105
+ "encoder.layers.14.fc1.weight": "model-00001-of-00005.safetensors",
106
+ "encoder.layers.14.fc2.bias": "model-00001-of-00005.safetensors",
107
+ "encoder.layers.14.fc2.weight": "model-00001-of-00005.safetensors",
108
+ "encoder.layers.14.final_layer_norm.bias": "model-00001-of-00005.safetensors",
109
+ "encoder.layers.14.final_layer_norm.weight": "model-00001-of-00005.safetensors",
110
+ "encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
111
+ "encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
112
+ "encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
113
+ "encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
114
+ "encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
115
+ "encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
116
+ "encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
117
+ "encoder.layers.14.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
118
+ "encoder.layers.14.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
119
+ "encoder.layers.15.fc1.bias": "model-00001-of-00005.safetensors",
120
+ "encoder.layers.15.fc1.weight": "model-00001-of-00005.safetensors",
121
+ "encoder.layers.15.fc2.bias": "model-00001-of-00005.safetensors",
122
+ "encoder.layers.15.fc2.weight": "model-00001-of-00005.safetensors",
123
+ "encoder.layers.15.final_layer_norm.bias": "model-00001-of-00005.safetensors",
124
+ "encoder.layers.15.final_layer_norm.weight": "model-00001-of-00005.safetensors",
125
+ "encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
126
+ "encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
127
+ "encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
128
+ "encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
129
+ "encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
130
+ "encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
131
+ "encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
132
+ "encoder.layers.15.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
133
+ "encoder.layers.15.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
134
+ "encoder.layers.16.fc1.bias": "model-00001-of-00005.safetensors",
135
+ "encoder.layers.16.fc1.weight": "model-00001-of-00005.safetensors",
136
+ "encoder.layers.16.fc2.bias": "model-00001-of-00005.safetensors",
137
+ "encoder.layers.16.fc2.weight": "model-00001-of-00005.safetensors",
138
+ "encoder.layers.16.final_layer_norm.bias": "model-00001-of-00005.safetensors",
139
+ "encoder.layers.16.final_layer_norm.weight": "model-00001-of-00005.safetensors",
140
+ "encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
141
+ "encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
142
+ "encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
143
+ "encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
144
+ "encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
145
+ "encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
146
+ "encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
147
+ "encoder.layers.16.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
148
+ "encoder.layers.16.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
149
+ "encoder.layers.17.fc1.bias": "model-00001-of-00005.safetensors",
150
+ "encoder.layers.17.fc1.weight": "model-00001-of-00005.safetensors",
151
+ "encoder.layers.17.fc2.bias": "model-00001-of-00005.safetensors",
152
+ "encoder.layers.17.fc2.weight": "model-00001-of-00005.safetensors",
153
+ "encoder.layers.17.final_layer_norm.bias": "model-00001-of-00005.safetensors",
154
+ "encoder.layers.17.final_layer_norm.weight": "model-00001-of-00005.safetensors",
155
+ "encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
156
+ "encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
157
+ "encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
158
+ "encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
159
+ "encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
160
+ "encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
161
+ "encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
162
+ "encoder.layers.17.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
163
+ "encoder.layers.17.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
164
+ "encoder.layers.18.fc1.bias": "model-00001-of-00005.safetensors",
165
+ "encoder.layers.18.fc1.weight": "model-00001-of-00005.safetensors",
166
+ "encoder.layers.18.fc2.bias": "model-00001-of-00005.safetensors",
167
+ "encoder.layers.18.fc2.weight": "model-00001-of-00005.safetensors",
168
+ "encoder.layers.18.final_layer_norm.bias": "model-00001-of-00005.safetensors",
169
+ "encoder.layers.18.final_layer_norm.weight": "model-00001-of-00005.safetensors",
170
+ "encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
171
+ "encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
172
+ "encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
173
+ "encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
174
+ "encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
175
+ "encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
176
+ "encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
177
+ "encoder.layers.18.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
178
+ "encoder.layers.18.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
179
+ "encoder.layers.19.fc1.bias": "model-00001-of-00005.safetensors",
180
+ "encoder.layers.19.fc1.weight": "model-00001-of-00005.safetensors",
181
+ "encoder.layers.19.fc2.bias": "model-00001-of-00005.safetensors",
182
+ "encoder.layers.19.fc2.weight": "model-00001-of-00005.safetensors",
183
+ "encoder.layers.19.final_layer_norm.bias": "model-00001-of-00005.safetensors",
184
+ "encoder.layers.19.final_layer_norm.weight": "model-00001-of-00005.safetensors",
185
+ "encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
186
+ "encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
187
+ "encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
188
+ "encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
189
+ "encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
190
+ "encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
191
+ "encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
192
+ "encoder.layers.19.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
193
+ "encoder.layers.19.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
194
+ "encoder.layers.2.fc1.bias": "model-00001-of-00005.safetensors",
195
+ "encoder.layers.2.fc1.weight": "model-00001-of-00005.safetensors",
196
+ "encoder.layers.2.fc2.bias": "model-00001-of-00005.safetensors",
197
+ "encoder.layers.2.fc2.weight": "model-00001-of-00005.safetensors",
198
+ "encoder.layers.2.final_layer_norm.bias": "model-00001-of-00005.safetensors",
199
+ "encoder.layers.2.final_layer_norm.weight": "model-00001-of-00005.safetensors",
200
+ "encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
201
+ "encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
202
+ "encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
203
+ "encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
204
+ "encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
205
+ "encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
206
+ "encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
207
+ "encoder.layers.2.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
208
+ "encoder.layers.2.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
209
+ "encoder.layers.20.fc1.bias": "model-00001-of-00005.safetensors",
210
+ "encoder.layers.20.fc1.weight": "model-00001-of-00005.safetensors",
211
+ "encoder.layers.20.fc2.bias": "model-00001-of-00005.safetensors",
212
+ "encoder.layers.20.fc2.weight": "model-00001-of-00005.safetensors",
213
+ "encoder.layers.20.final_layer_norm.bias": "model-00001-of-00005.safetensors",
214
+ "encoder.layers.20.final_layer_norm.weight": "model-00001-of-00005.safetensors",
215
+ "encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
216
+ "encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
217
+ "encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
218
+ "encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
219
+ "encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
220
+ "encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
221
+ "encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
222
+ "encoder.layers.20.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
223
+ "encoder.layers.20.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
224
+ "encoder.layers.21.fc1.bias": "model-00001-of-00005.safetensors",
225
+ "encoder.layers.21.fc1.weight": "model-00001-of-00005.safetensors",
226
+ "encoder.layers.21.fc2.bias": "model-00001-of-00005.safetensors",
227
+ "encoder.layers.21.fc2.weight": "model-00001-of-00005.safetensors",
228
+ "encoder.layers.21.final_layer_norm.bias": "model-00001-of-00005.safetensors",
229
+ "encoder.layers.21.final_layer_norm.weight": "model-00001-of-00005.safetensors",
230
+ "encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
231
+ "encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
232
+ "encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
233
+ "encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
234
+ "encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
235
+ "encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
236
+ "encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
237
+ "encoder.layers.21.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
238
+ "encoder.layers.21.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
239
+ "encoder.layers.22.fc1.bias": "model-00001-of-00005.safetensors",
240
+ "encoder.layers.22.fc1.weight": "model-00001-of-00005.safetensors",
241
+ "encoder.layers.22.fc2.bias": "model-00001-of-00005.safetensors",
242
+ "encoder.layers.22.fc2.weight": "model-00001-of-00005.safetensors",
243
+ "encoder.layers.22.final_layer_norm.bias": "model-00001-of-00005.safetensors",
244
+ "encoder.layers.22.final_layer_norm.weight": "model-00001-of-00005.safetensors",
245
+ "encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
246
+ "encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
247
+ "encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
248
+ "encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
249
+ "encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
250
+ "encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
251
+ "encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
252
+ "encoder.layers.22.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
253
+ "encoder.layers.22.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
254
+ "encoder.layers.23.fc1.bias": "model-00001-of-00005.safetensors",
255
+ "encoder.layers.23.fc1.weight": "model-00001-of-00005.safetensors",
256
+ "encoder.layers.23.fc2.bias": "model-00001-of-00005.safetensors",
257
+ "encoder.layers.23.fc2.weight": "model-00001-of-00005.safetensors",
258
+ "encoder.layers.23.final_layer_norm.bias": "model-00001-of-00005.safetensors",
259
+ "encoder.layers.23.final_layer_norm.weight": "model-00001-of-00005.safetensors",
260
+ "encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
261
+ "encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
262
+ "encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
263
+ "encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
264
+ "encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
265
+ "encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
266
+ "encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
267
+ "encoder.layers.23.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
268
+ "encoder.layers.23.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
269
+ "encoder.layers.24.fc1.bias": "model-00001-of-00005.safetensors",
270
+ "encoder.layers.24.fc1.weight": "model-00001-of-00005.safetensors",
271
+ "encoder.layers.24.fc2.bias": "model-00001-of-00005.safetensors",
272
+ "encoder.layers.24.fc2.weight": "model-00001-of-00005.safetensors",
273
+ "encoder.layers.24.final_layer_norm.bias": "model-00001-of-00005.safetensors",
274
+ "encoder.layers.24.final_layer_norm.weight": "model-00001-of-00005.safetensors",
275
+ "encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
276
+ "encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
277
+ "encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
278
+ "encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
279
+ "encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
280
+ "encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
281
+ "encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
282
+ "encoder.layers.24.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
283
+ "encoder.layers.24.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
284
+ "encoder.layers.25.fc1.bias": "model-00001-of-00005.safetensors",
285
+ "encoder.layers.25.fc1.weight": "model-00001-of-00005.safetensors",
286
+ "encoder.layers.25.fc2.bias": "model-00001-of-00005.safetensors",
287
+ "encoder.layers.25.fc2.weight": "model-00001-of-00005.safetensors",
288
+ "encoder.layers.25.final_layer_norm.bias": "model-00001-of-00005.safetensors",
289
+ "encoder.layers.25.final_layer_norm.weight": "model-00001-of-00005.safetensors",
290
+ "encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
291
+ "encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
292
+ "encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
293
+ "encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
294
+ "encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
295
+ "encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
296
+ "encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
297
+ "encoder.layers.25.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
298
+ "encoder.layers.25.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
299
+ "encoder.layers.26.fc1.bias": "model-00001-of-00005.safetensors",
300
+ "encoder.layers.26.fc1.weight": "model-00001-of-00005.safetensors",
301
+ "encoder.layers.26.fc2.bias": "model-00001-of-00005.safetensors",
302
+ "encoder.layers.26.fc2.weight": "model-00001-of-00005.safetensors",
303
+ "encoder.layers.26.final_layer_norm.bias": "model-00001-of-00005.safetensors",
304
+ "encoder.layers.26.final_layer_norm.weight": "model-00001-of-00005.safetensors",
305
+ "encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
306
+ "encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
307
+ "encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
308
+ "encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
309
+ "encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
310
+ "encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
311
+ "encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
312
+ "encoder.layers.26.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
313
+ "encoder.layers.26.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
314
+ "encoder.layers.27.fc1.bias": "model-00001-of-00005.safetensors",
315
+ "encoder.layers.27.fc1.weight": "model-00001-of-00005.safetensors",
316
+ "encoder.layers.27.fc2.bias": "model-00001-of-00005.safetensors",
317
+ "encoder.layers.27.fc2.weight": "model-00001-of-00005.safetensors",
318
+ "encoder.layers.27.final_layer_norm.bias": "model-00001-of-00005.safetensors",
319
+ "encoder.layers.27.final_layer_norm.weight": "model-00001-of-00005.safetensors",
320
+ "encoder.layers.27.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
321
+ "encoder.layers.27.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
322
+ "encoder.layers.27.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
323
+ "encoder.layers.27.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
324
+ "encoder.layers.27.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
325
+ "encoder.layers.27.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
326
+ "encoder.layers.27.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
327
+ "encoder.layers.27.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
328
+ "encoder.layers.27.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
329
+ "encoder.layers.28.fc1.bias": "model-00001-of-00005.safetensors",
330
+ "encoder.layers.28.fc1.weight": "model-00001-of-00005.safetensors",
331
+ "encoder.layers.28.fc2.bias": "model-00001-of-00005.safetensors",
332
+ "encoder.layers.28.fc2.weight": "model-00001-of-00005.safetensors",
333
+ "encoder.layers.28.final_layer_norm.bias": "model-00001-of-00005.safetensors",
334
+ "encoder.layers.28.final_layer_norm.weight": "model-00001-of-00005.safetensors",
335
+ "encoder.layers.28.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
336
+ "encoder.layers.28.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
337
+ "encoder.layers.28.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
338
+ "encoder.layers.28.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
339
+ "encoder.layers.28.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "encoder.layers.28.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
341
+ "encoder.layers.28.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
342
+ "encoder.layers.28.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
343
+ "encoder.layers.28.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
344
+ "encoder.layers.29.fc1.bias": "model-00001-of-00005.safetensors",
345
+ "encoder.layers.29.fc1.weight": "model-00001-of-00005.safetensors",
346
+ "encoder.layers.29.fc2.bias": "model-00001-of-00005.safetensors",
347
+ "encoder.layers.29.fc2.weight": "model-00001-of-00005.safetensors",
348
+ "encoder.layers.29.final_layer_norm.bias": "model-00001-of-00005.safetensors",
349
+ "encoder.layers.29.final_layer_norm.weight": "model-00001-of-00005.safetensors",
350
+ "encoder.layers.29.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
351
+ "encoder.layers.29.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
352
+ "encoder.layers.29.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
353
+ "encoder.layers.29.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
354
+ "encoder.layers.29.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
355
+ "encoder.layers.29.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
356
+ "encoder.layers.29.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
357
+ "encoder.layers.29.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
358
+ "encoder.layers.29.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
359
+ "encoder.layers.3.fc1.bias": "model-00001-of-00005.safetensors",
360
+ "encoder.layers.3.fc1.weight": "model-00001-of-00005.safetensors",
361
+ "encoder.layers.3.fc2.bias": "model-00001-of-00005.safetensors",
362
+ "encoder.layers.3.fc2.weight": "model-00001-of-00005.safetensors",
363
+ "encoder.layers.3.final_layer_norm.bias": "model-00001-of-00005.safetensors",
364
+ "encoder.layers.3.final_layer_norm.weight": "model-00001-of-00005.safetensors",
365
+ "encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
366
+ "encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
367
+ "encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
368
+ "encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
369
+ "encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
370
+ "encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
371
+ "encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
372
+ "encoder.layers.3.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
373
+ "encoder.layers.3.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
374
+ "encoder.layers.30.fc1.bias": "model-00001-of-00005.safetensors",
375
+ "encoder.layers.30.fc1.weight": "model-00001-of-00005.safetensors",
376
+ "encoder.layers.30.fc2.bias": "model-00001-of-00005.safetensors",
377
+ "encoder.layers.30.fc2.weight": "model-00001-of-00005.safetensors",
378
+ "encoder.layers.30.final_layer_norm.bias": "model-00001-of-00005.safetensors",
379
+ "encoder.layers.30.final_layer_norm.weight": "model-00001-of-00005.safetensors",
380
+ "encoder.layers.30.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
381
+ "encoder.layers.30.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
382
+ "encoder.layers.30.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
383
+ "encoder.layers.30.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
384
+ "encoder.layers.30.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
385
+ "encoder.layers.30.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
386
+ "encoder.layers.30.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
387
+ "encoder.layers.30.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
388
+ "encoder.layers.30.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
389
+ "encoder.layers.31.fc1.bias": "model-00001-of-00005.safetensors",
390
+ "encoder.layers.31.fc1.weight": "model-00001-of-00005.safetensors",
391
+ "encoder.layers.31.fc2.bias": "model-00001-of-00005.safetensors",
392
+ "encoder.layers.31.fc2.weight": "model-00001-of-00005.safetensors",
393
+ "encoder.layers.31.final_layer_norm.bias": "model-00001-of-00005.safetensors",
394
+ "encoder.layers.31.final_layer_norm.weight": "model-00001-of-00005.safetensors",
395
+ "encoder.layers.31.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
396
+ "encoder.layers.31.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
397
+ "encoder.layers.31.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
398
+ "encoder.layers.31.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
399
+ "encoder.layers.31.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
400
+ "encoder.layers.31.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
401
+ "encoder.layers.31.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
402
+ "encoder.layers.31.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
403
+ "encoder.layers.31.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
404
+ "encoder.layers.4.fc1.bias": "model-00001-of-00005.safetensors",
405
+ "encoder.layers.4.fc1.weight": "model-00001-of-00005.safetensors",
406
+ "encoder.layers.4.fc2.bias": "model-00001-of-00005.safetensors",
407
+ "encoder.layers.4.fc2.weight": "model-00001-of-00005.safetensors",
408
+ "encoder.layers.4.final_layer_norm.bias": "model-00001-of-00005.safetensors",
409
+ "encoder.layers.4.final_layer_norm.weight": "model-00001-of-00005.safetensors",
410
+ "encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
411
+ "encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
412
+ "encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
413
+ "encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
414
+ "encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
415
+ "encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
416
+ "encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
417
+ "encoder.layers.4.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
418
+ "encoder.layers.4.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
419
+ "encoder.layers.5.fc1.bias": "model-00001-of-00005.safetensors",
420
+ "encoder.layers.5.fc1.weight": "model-00001-of-00005.safetensors",
421
+ "encoder.layers.5.fc2.bias": "model-00001-of-00005.safetensors",
422
+ "encoder.layers.5.fc2.weight": "model-00001-of-00005.safetensors",
423
+ "encoder.layers.5.final_layer_norm.bias": "model-00001-of-00005.safetensors",
424
+ "encoder.layers.5.final_layer_norm.weight": "model-00001-of-00005.safetensors",
425
+ "encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
426
+ "encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
427
+ "encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
428
+ "encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
429
+ "encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
430
+ "encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
431
+ "encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
432
+ "encoder.layers.5.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
433
+ "encoder.layers.5.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
434
+ "encoder.layers.6.fc1.bias": "model-00001-of-00005.safetensors",
435
+ "encoder.layers.6.fc1.weight": "model-00001-of-00005.safetensors",
436
+ "encoder.layers.6.fc2.bias": "model-00001-of-00005.safetensors",
437
+ "encoder.layers.6.fc2.weight": "model-00001-of-00005.safetensors",
438
+ "encoder.layers.6.final_layer_norm.bias": "model-00001-of-00005.safetensors",
439
+ "encoder.layers.6.final_layer_norm.weight": "model-00001-of-00005.safetensors",
440
+ "encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
441
+ "encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
442
+ "encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
443
+ "encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
444
+ "encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
445
+ "encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
446
+ "encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
447
+ "encoder.layers.6.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
448
+ "encoder.layers.6.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
449
+ "encoder.layers.7.fc1.bias": "model-00001-of-00005.safetensors",
450
+ "encoder.layers.7.fc1.weight": "model-00001-of-00005.safetensors",
451
+ "encoder.layers.7.fc2.bias": "model-00001-of-00005.safetensors",
452
+ "encoder.layers.7.fc2.weight": "model-00001-of-00005.safetensors",
453
+ "encoder.layers.7.final_layer_norm.bias": "model-00001-of-00005.safetensors",
454
+ "encoder.layers.7.final_layer_norm.weight": "model-00001-of-00005.safetensors",
455
+ "encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
456
+ "encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
457
+ "encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
458
+ "encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
459
+ "encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
460
+ "encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
461
+ "encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
462
+ "encoder.layers.7.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
463
+ "encoder.layers.7.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
464
+ "encoder.layers.8.fc1.bias": "model-00001-of-00005.safetensors",
465
+ "encoder.layers.8.fc1.weight": "model-00001-of-00005.safetensors",
466
+ "encoder.layers.8.fc2.bias": "model-00001-of-00005.safetensors",
467
+ "encoder.layers.8.fc2.weight": "model-00001-of-00005.safetensors",
468
+ "encoder.layers.8.final_layer_norm.bias": "model-00001-of-00005.safetensors",
469
+ "encoder.layers.8.final_layer_norm.weight": "model-00001-of-00005.safetensors",
470
+ "encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
471
+ "encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
472
+ "encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
473
+ "encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
474
+ "encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
475
+ "encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
476
+ "encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
477
+ "encoder.layers.8.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
478
+ "encoder.layers.8.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
479
+ "encoder.layers.9.fc1.bias": "model-00001-of-00005.safetensors",
480
+ "encoder.layers.9.fc1.weight": "model-00001-of-00005.safetensors",
481
+ "encoder.layers.9.fc2.bias": "model-00001-of-00005.safetensors",
482
+ "encoder.layers.9.fc2.weight": "model-00001-of-00005.safetensors",
483
+ "encoder.layers.9.final_layer_norm.bias": "model-00001-of-00005.safetensors",
484
+ "encoder.layers.9.final_layer_norm.weight": "model-00001-of-00005.safetensors",
485
+ "encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
486
+ "encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00005.safetensors",
487
+ "encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00005.safetensors",
488
+ "encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
489
+ "encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
490
+ "encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
491
+ "encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
492
+ "encoder.layers.9.self_attn_layer_norm.bias": "model-00001-of-00005.safetensors",
493
+ "encoder.layers.9.self_attn_layer_norm.weight": "model-00001-of-00005.safetensors",
494
+ "language_model.model.embed_tokens.weight": "model-00002-of-00005.safetensors",
495
+ "language_model.model.layers.0.input_layernorm.weight": "model-00002-of-00005.safetensors",
496
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
497
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
498
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
499
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
500
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
501
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
502
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
503
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
504
+ "language_model.model.layers.1.input_layernorm.weight": "model-00002-of-00005.safetensors",
505
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
506
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
507
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
508
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
509
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
510
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
511
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
512
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
513
+ "language_model.model.layers.10.input_layernorm.weight": "model-00003-of-00005.safetensors",
514
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
515
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
516
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
517
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
518
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
519
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
520
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
521
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
522
+ "language_model.model.layers.11.input_layernorm.weight": "model-00003-of-00005.safetensors",
523
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
524
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
525
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
526
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
527
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
528
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
529
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
530
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
531
+ "language_model.model.layers.12.input_layernorm.weight": "model-00003-of-00005.safetensors",
532
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
533
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
534
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
535
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
536
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
537
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
538
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
539
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
540
+ "language_model.model.layers.13.input_layernorm.weight": "model-00003-of-00005.safetensors",
541
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
542
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
543
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
544
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
545
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
546
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
547
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
548
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
549
+ "language_model.model.layers.14.input_layernorm.weight": "model-00003-of-00005.safetensors",
550
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
551
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
552
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
553
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
554
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
555
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
556
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
557
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
558
+ "language_model.model.layers.15.input_layernorm.weight": "model-00004-of-00005.safetensors",
559
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
560
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
561
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
562
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
563
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
564
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
565
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
566
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
567
+ "language_model.model.layers.16.input_layernorm.weight": "model-00004-of-00005.safetensors",
568
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
569
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
570
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
571
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
572
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
573
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
574
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
575
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
576
+ "language_model.model.layers.17.input_layernorm.weight": "model-00004-of-00005.safetensors",
577
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
578
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
579
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
580
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
581
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
582
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
583
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
584
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
585
+ "language_model.model.layers.18.input_layernorm.weight": "model-00004-of-00005.safetensors",
586
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
587
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
588
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
589
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
590
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
591
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
592
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
593
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
594
+ "language_model.model.layers.19.input_layernorm.weight": "model-00004-of-00005.safetensors",
595
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
596
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
597
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
598
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
599
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
600
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
601
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
602
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
603
+ "language_model.model.layers.2.input_layernorm.weight": "model-00002-of-00005.safetensors",
604
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
605
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
606
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
607
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
608
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
609
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
610
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
611
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
612
+ "language_model.model.layers.20.input_layernorm.weight": "model-00004-of-00005.safetensors",
613
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
614
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
615
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
616
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
617
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
618
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
619
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
620
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
621
+ "language_model.model.layers.21.input_layernorm.weight": "model-00004-of-00005.safetensors",
622
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
623
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
624
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
625
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
626
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
627
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
628
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
629
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
630
+ "language_model.model.layers.22.input_layernorm.weight": "model-00004-of-00005.safetensors",
631
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
632
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
633
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
634
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
635
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
636
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
637
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
638
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
639
+ "language_model.model.layers.23.input_layernorm.weight": "model-00004-of-00005.safetensors",
640
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
641
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
642
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
643
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
644
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
645
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
646
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
647
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
648
+ "language_model.model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
649
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
650
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
651
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
652
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
653
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
654
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
655
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
656
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
657
+ "language_model.model.layers.25.input_layernorm.weight": "model-00005-of-00005.safetensors",
658
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
659
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
660
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
661
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
662
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
663
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
664
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
665
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
666
+ "language_model.model.layers.26.input_layernorm.weight": "model-00005-of-00005.safetensors",
667
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
668
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
669
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
670
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
671
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
672
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
673
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
674
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
675
+ "language_model.model.layers.27.input_layernorm.weight": "model-00005-of-00005.safetensors",
676
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
677
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
678
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
679
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
680
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
681
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
682
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
683
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
684
+ "language_model.model.layers.3.input_layernorm.weight": "model-00002-of-00005.safetensors",
685
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
686
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
687
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
688
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
689
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
690
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
691
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
692
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
693
+ "language_model.model.layers.4.input_layernorm.weight": "model-00002-of-00005.safetensors",
694
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
695
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
696
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
697
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
698
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
699
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
700
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
701
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
702
+ "language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00005.safetensors",
703
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
704
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
705
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
706
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
707
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
708
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
709
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
710
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
711
+ "language_model.model.layers.6.input_layernorm.weight": "model-00003-of-00005.safetensors",
712
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
713
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
714
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
715
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
716
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
717
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
718
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
719
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
720
+ "language_model.model.layers.7.input_layernorm.weight": "model-00003-of-00005.safetensors",
721
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
722
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
723
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
724
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
725
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
726
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
727
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
728
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
729
+ "language_model.model.layers.8.input_layernorm.weight": "model-00003-of-00005.safetensors",
730
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
731
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
732
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
733
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
734
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
735
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
736
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
737
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
738
+ "language_model.model.layers.9.input_layernorm.weight": "model-00003-of-00005.safetensors",
739
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
740
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
741
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
742
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
743
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
744
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
745
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
746
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
747
+ "language_model.model.norm.weight": "model-00005-of-00005.safetensors",
748
+ "projector.linear_1.weight": "model-00001-of-00005.safetensors",
749
+ "projector.linear_2.weight": "model-00001-of-00005.safetensors",
750
+ "projector.ln_mid.weight": "model-00001-of-00005.safetensors",
751
+ "projector.ln_pre.weight": "model-00001-of-00005.safetensors"
752
+ }
753
+ }
modeling_vlfm.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import transformers
5
+ from transformers import (
6
+ AutoConfig, AutoModel,
7
+ AutoModelForCausalLM, WhisperModel)
8
+
9
+ from configs import VLFMConfig, LossFunction, LossConfig, build_tokenizer
10
+ from projector import VLFMProjector
11
+ from constants import IGNORE_INDEX, SPEECH_TOKEN_INDEX
12
+
13
+ from transformers.modeling_outputs import CausalLMOutputWithPast
14
+ from transformers.generation.utils import GenerateOutput
15
+ from typing import Optional, Tuple, List, Union
16
+
17
+
18
+ class VLFMModel(transformers.LlamaPreTrainedModel):
19
+ config_class = VLFMConfig
20
+ def __init__(self, config, torch_dtype=torch.bfloat16):
21
+ super(VLFMModel, self).__init__(config)
22
+
23
+ whisper = WhisperModel.from_pretrained(config.audio_model_id,
24
+ torch_dtype=torch_dtype,)
25
+
26
+ self.encoder = whisper.encoder
27
+ self.projector = VLFMProjector(config)
28
+ self.language_model = AutoModelForCausalLM.from_pretrained(config.text_model_id,
29
+ torch_dtype=torch_dtype)
30
+
31
+ self._train_module(self.encoder, False)
32
+ self._train_module(self.language_model, False)
33
+ self._train_module(self.projector, True)
34
+
35
+ self.encoder.to(dtype=torch_dtype)
36
+ self.language_model.to(dtype=torch_dtype)
37
+ self.projector.to(dtype=torch_dtype)
38
+
39
+ self.tokenizer, self.audio_token_id = build_tokenizer(config.text_model_id, config.tokenizer_padding_side)
40
+
41
+ self.tokenizer_model_max_length = self.tokenizer.model_max_length
42
+ self._resize_token_embeddings(self.tokenizer)
43
+ self.get_input_embeddings().to(dtype=self.language_model.dtype)
44
+ if hasattr(self.language_model, "get_output_embeddings") and self.language_model.get_output_embeddings() is not None:
45
+ self.language_model.get_output_embeddings().to(dtype=self.language_model.dtype)
46
+
47
+ self.loss_config = LossConfig(LossFunction.KL_Divergence)
48
+ #self.loss_config.loss_function = LossFunction.KL_Divergence
49
+
50
+ self.post_init()
51
+
52
+ def get_input_embeddings(self):
53
+ return self.language_model.get_input_embeddings()
54
+
55
+ def set_input_embeddings(self, new_emb):
56
+ return self.language_model.set_input_embeddings(new_emb)
57
+
58
+ @property
59
+ def embed_tokens(self):
60
+ return self.language_model.get_input_embeddings()
61
+
62
+ def _train_module(self, module, trainable: bool):
63
+ for param in module.parameters():
64
+ param.requires_grad= trainable
65
+
66
+ def _audio_iter(self, audio_batch_size):
67
+ audio_index = 0
68
+ for i_b, count in enumerate(audio_batch_size.view(-1).tolist()):
69
+ for _ in range(int(count)):
70
+ yield i_b, audio_index
71
+ audio_index += 1
72
+
73
+ def _resize_token_embeddings(self, tokenizer, pad_to_multiple_of=None):
74
+
75
+ model_embeds = self.language_model.resize_token_embeddings(len(tokenizer))
76
+ self.config.vocab_size = model_embeds.num_embeddings
77
+ self.vocab_size = model_embeds.num_embeddings
78
+ return model_embeds
79
+
80
+ def _encode_speech(self, audio_values):
81
+ with torch.no_grad():
82
+ encoder_outputs = self.encoder(audio_values, output_hidden_states=False)
83
+ audio_embeds = encoder_outputs.last_hidden_state
84
+ downsampled_embeds = self.projector(audio_embeds) #(B, T, D)
85
+ #print(f"Shape of projector output: {downsampled_embeds.shape}")
86
+ return downsampled_embeds
87
+
88
+ def _splice_chunks(self, text_embeds, audio_embeds, audio_token_start_idx, audio_token_len, audio_batch_size):
89
+ D = text_embeds.size(-1)
90
+ for i_b, i_chunk in self._audio_iter(audio_batch_size):
91
+ start = int(audio_token_start_idx[i_chunk].item())
92
+ span = int(audio_token_len[i_chunk].item())
93
+ a = audio_embeds[i_chunk]
94
+ Ta = a.size(0)
95
+ use = min(Ta, span)
96
+ text_embeds[i_b, start:start+use, :] = a[:use].to(text_embeds.dtype)
97
+
98
+
99
+ def _compute_kl_loss(
100
+ self,
101
+ *,
102
+ student_logits: torch.Tensor,
103
+ labels: torch.Tensor,
104
+ alt_input_ids: torch.Tensor,
105
+ alt_attention_mask: torch.Tensor,
106
+ alt_labels: torch.Tensor,
107
+ past_key_values=None,
108
+ **kwargs,
109
+ ):
110
+ lm_was_training = self.language_model.training
111
+ self.language_model.eval()
112
+ with torch.no_grad():
113
+ alt_input_embeds = self.language_model.get_input_embeddings()(alt_input_ids)
114
+ teacher_out = self.language_model(
115
+ inputs_embeds=alt_input_embeds,
116
+ attention_mask=alt_attention_mask,
117
+ use_cache=False,
118
+ return_dict=True,
119
+ past_key_values=past_key_values,
120
+ )
121
+ teacher_logits = teacher_out.logits
122
+ if lm_was_training:
123
+ self.language_model.train()
124
+
125
+ T = self.loss_config.kl_temperature
126
+ student = F.log_softmax(student_logits[labels != IGNORE_INDEX] / T, dim=-1)
127
+ teacher = F.softmax(teacher_logits[alt_labels != IGNORE_INDEX] / T, dim=-1)
128
+ kl = F.kl_div(student, teacher, reduction="batchmean")
129
+ return kl
130
+
131
+
132
+
133
+ def forward(
134
+ self,
135
+ input_ids,
136
+ attention_mask,
137
+ labels=None,
138
+ *,
139
+ input_features=None,
140
+ audio_token_start_idx = None,
141
+ audio_token_len = None,
142
+ audio_batch_size = None,
143
+ alt_input_ids = None,
144
+ alt_attention_mask = None,
145
+ alt_labels = None,
146
+ return_dict = True,
147
+ **kwargs):
148
+ tok = self.language_model.get_input_embeddings()
149
+ text_embeds = tok(input_ids)
150
+
151
+ if input_features is not None and audio_token_start_idx is not None:
152
+ audio_embeds = self._encode_speech(input_features)
153
+ self._splice_chunks(
154
+ text_embeds,
155
+ audio_embeds,
156
+ audio_token_start_idx,
157
+ audio_token_len,
158
+ audio_batch_size
159
+ )
160
+
161
+ out = self.language_model(
162
+ inputs_embeds=text_embeds,
163
+ attention_mask=attention_mask,
164
+ labels =labels,
165
+ return_dict=True,
166
+ use_cache = True,
167
+ )
168
+
169
+ logits = out.logits
170
+ ce_loss = out.loss
171
+
172
+ alpha = self.loss_config.ce_weight
173
+ alpha = self.loss_config.ce_weight
174
+
175
+ kl = None
176
+ if (
177
+ self.training
178
+ and alt_input_ids is not None
179
+ and alt_attention_mask is not None
180
+ and alt_labels is not None
181
+ ):
182
+
183
+ kl = self._compute_kl_loss(
184
+ student_logits=logits,
185
+ labels=labels,
186
+ alt_input_ids=alt_input_ids,
187
+ alt_attention_mask=alt_attention_mask,
188
+ alt_labels=alt_labels,
189
+ past_key_values=None,
190
+ )
191
+
192
+ total_loss = alpha * ce_loss + (1 - alpha) * kl
193
+ else:
194
+ total_loss = ce_loss
195
+
196
+ return {
197
+ "loss": total_loss,
198
+ "loss_ce": ce_loss.detach() if ce_loss is not None else None,
199
+ "loss_kl": kl.detach() if kl is not None else None,
200
+ "logits": logits,}
201
+
202
+
203
+ ''' if (
204
+ self.training
205
+ and self.loss_config.loss_function == LossFunction.KL_Divergence
206
+ and alt_input_ids is not None
207
+ and alt_attention_mask is not None
208
+ and alt_labels is not None
209
+
210
+ ):
211
+ kl = self._compute_kl_loss(
212
+ student_logits=logits,
213
+ labels=labels,
214
+ alt_input_ids=alt_input_ids,
215
+ alt_attention_mask=alt_attention_mask,
216
+ alt_labels=alt_labels,
217
+ past_key_values=None,)
218
+
219
+ return {
220
+ "loss": kl,
221
+ "loss_ce": (ce_loss.detach() if ce_loss is not None else None),
222
+ logits: logits}
223
+
224
+ if return_dict:
225
+ return out
226
+ return (ce_loss, logits) '''
227
+
228
+ def _prepare_inputs_embeds(
229
+ self,
230
+ input_ids,
231
+ attention_mask,
232
+ *,
233
+ input_features = None,
234
+ audio_token_start_idx = None,
235
+ audio_token_len = None,
236
+ audio_batch_size= None,
237
+ ):
238
+ """
239
+ Returns:
240
+ inputs_embeds: [B, L, D] with audio spliced in
241
+ attention_mask: [B, L] (unchanged)
242
+ """
243
+ tok = self.language_model.get_input_embeddings()
244
+ inputs_embeds = tok(input_ids) # [B, L, D]
245
+
246
+ if input_features is not None and audio_token_start_idx is not None:
247
+ # Normalize shapes: treat "one audio per sample" as N_chunks == B
248
+ feats = input_features
249
+ if feats.dim() == 3 and feats.size(0) == input_ids.size(0):
250
+ audio_batch_size = torch.ones(input_ids.size(0), dtype=torch.long, device=input_ids.device)
251
+ assert audio_batch_size is not None, "audio_batch_size required when splicing audio."
252
+
253
+ # Encode + project, then splice
254
+ audio_embeds = self._encode_audio(feats) # [N_chunks, T_audio, D]
255
+ self._splice_chunks(
256
+ text_embeds=inputs_embeds,
257
+ audio_embeds=audio_embeds,
258
+ audio_token_start_idx=audio_token_start_idx,
259
+ audio_token_len=audio_token_len,
260
+ audio_batch_size=audio_batch_size,
261
+ )
262
+
263
+ return inputs_embeds, attention_mask
264
+
265
+ @torch.no_grad()
266
+ def generate(
267
+ self,
268
+ input_ids, # [B, L]
269
+ attention_mask, # [B, L]
270
+ *,
271
+ input_features,
272
+ audio_token_start_idx= None,
273
+ audio_token_len= None,
274
+ audio_batch_size = None,
275
+ **gen_kwargs,
276
+ ):
277
+ """
278
+ Build spliced embeddings and call the base LM's generate"""
279
+ self.eval()
280
+ inputs_embeds, attn_mask = self._prepare_inputs_embeds(
281
+ input_ids=input_ids,
282
+ attention_mask=attention_mask,
283
+ input_features=input_features,
284
+ audio_token_start_idx=audio_token_start_idx,
285
+ audio_token_len=audio_token_len,
286
+ audio_batch_size=audio_batch_size,
287
+ )
288
+ return self.language_model.generate(
289
+ inputs_embeds=inputs_embeds,
290
+ attention_mask=attn_mask,
291
+ **gen_kwargs,
292
+ )
293
+
294
+
295
+ AutoConfig.register("babs-vlfm", VLFMConfig)
296
+ AutoModel.register(VLFMConfig, VLFMModel)
preprocessor_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processor.VLFMProcessor"
4
+ },
5
+ "chunk_length": 30,
6
+ "dither": 0.0,
7
+ "feature_extractor_type": "WhisperFeatureExtractor",
8
+ "feature_size": 128,
9
+ "hop_length": 160,
10
+ "n_fft": 400,
11
+ "n_samples": 480000,
12
+ "nb_max_frames": 3000,
13
+ "padding_side": "right",
14
+ "padding_value": 0.0,
15
+ "processor_class": "VLFMProcessor",
16
+ "return_attention_mask": false,
17
+ "sampling_rate": 16000
18
+ }
processing_vlfm.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from typing import List, Dict, Any, Union, Optional
4
+ from transformers.processing_utils import ProcessorMixin
5
+ from transformers import WhisperFeatureExtractor, AutoTokenizer, AutoProcessor
6
+
7
+ from configs import VLFMConfig, build_tokenizer
8
+
9
+
10
+ class VLFMProcessor(ProcessorMixin):
11
+ attributes = ["feature_extractor", "tokenizer"]
12
+ feature_extractor_class = "WhisperFeatureExtractor"
13
+ tokenizer_class = "AutoTokenizer"
14
+
15
+ def __init__(
16
+ self,
17
+ feature_extractor: WhisperFeatureExtractor,
18
+ tokenizer: AutoTokenizer,
19
+ config: VLFMConfig,
20
+ ):
21
+ super().__init__(feature_extractor=feature_extractor, tokenizer=tokenizer)
22
+
23
+ _, self.audio_token_id = build_tokenizer(
24
+ config.text_model_id, config.tokenizer_padding_side
25
+ )
26
+ if self.audio_token_id == tokenizer.unk_token_id:
27
+ raise ValueError(
28
+ "Audio placeholder token is <unk>. "
29
+ "Add a real special token (e.g. <|audio|>) to the tokenizer vocab."
30
+ )
31
+ #print(f"audio_placeholder_token_id: {self.audio_token_id}")
32
+
33
+ if tokenizer.pad_token_id is None:
34
+ tokenizer.pad_token = tokenizer.eos_token
35
+ tokenizer.padding_side = config.tokenizer_padding_side
36
+
37
+
38
+ self.ds_rate = int(config.ds_rate)
39
+ self.stack_factor = int(config.stack_factor)
40
+ self.max_seconds = float(config.max_seconds)
41
+
42
+ self._marker = "<AUDIO_SPAN>"
43
+
44
+ def __call__(self, text: Union[str, List[str]], **kwargs) -> Dict[str, Any]:
45
+ if isinstance(text, str):
46
+ text = [text]
47
+
48
+ def _contains_audio_placeholder(s: str) -> bool:
49
+ ids = self.tokenizer(s, add_special_tokens=False)["input_ids"]
50
+ return self.audio_token_id in ids
51
+
52
+ if any(_contains_audio_placeholder(t) for t in text):
53
+ raise ValueError(
54
+ "Audio placeholder token detected in raw text. "
55
+ "Use `apply_chat_template` with {'type': 'audio', 'array': ...} instead."
56
+ )
57
+
58
+ enc = self.tokenizer(text, **kwargs)
59
+ return enc
60
+
61
+ def _validate_audio(self, x: np.ndarray) -> np.ndarray:
62
+ if not isinstance(x, np.ndarray):
63
+ x = np.asarray(x)
64
+ if x.ndim == 2:
65
+ x = x.mean(axis=0) if x.shape[0] < x.shape[1] else x.mean(axis=1)
66
+ elif x.ndim != 1:
67
+ raise ValueError(f"Expected 1-D mono waveform, got shape={x.shape}")
68
+ if x.size == 0 or not np.isfinite(x).all():
69
+ raise ValueError("Audio is empty or contains NaNs/Infs.")
70
+ return x.astype(np.float32, copy=False)
71
+
72
+ def apply_chat_template(
73
+ self,
74
+ conversation: List[Dict],
75
+ *,
76
+ tokenize: bool = False,
77
+ add_generation_prompt: bool = False,
78
+ padding: bool = False,
79
+ truncation: bool = True,
80
+ max_length: int = 4096,
81
+ sampling_rate: Optional[int] = 16_000,
82
+ return_tensors: str = "pt",
83
+ **kwargs,
84
+ ) -> Dict[str, Any]:
85
+ """
86
+ conversation: list of turns, where each turn is:
87
+ {"role": "user" | "assistant" | "system", "content": str | List[{"type": "text"|"audio", ...}]}
88
+
89
+ Exactly one audio span is supported per conversation.
90
+ """
91
+
92
+ if not isinstance(conversation, list) or not conversation:
93
+ raise ValueError("Conversation must be a non-empty list of turns.")
94
+
95
+ text_conv: List[Dict[str, str]] = []
96
+ audio_array: Optional[np.ndarray] = None
97
+
98
+ for turn in conversation:
99
+ role = turn.get("role", None)
100
+ content = turn.get("content", "")
101
+
102
+ if not isinstance(role, str):
103
+ raise ValueError("Each turn must have a string 'role'.")
104
+ if isinstance(content, str):
105
+ text_conv.append({"role": role, "content": content})
106
+ continue
107
+
108
+ buf: List[str] = []
109
+ for item in content:
110
+ t = item.get("type", None)
111
+ if t == "text":
112
+ buf.append(item.get("text", ""))
113
+ elif t == "audio":
114
+ if audio_array is not None:
115
+ raise ValueError(
116
+ "VLFMProcessor supports exactly one audio span per conversation."
117
+ )
118
+ arr = item.get("array", None)
119
+ if arr is None:
120
+ raise ValueError("Audio item missing 'array'.")
121
+ audio_array = self._validate_audio(arr)
122
+ buf.append(self._marker)
123
+ else:
124
+ raise ValueError(f"Unsupported content type: {t}")
125
+
126
+ text_conv.append({"role": role, "content": "".join(buf)})
127
+
128
+ if audio_array is None:
129
+ raise ValueError("No audio found in conversation (exactly one audio span required).")
130
+
131
+ prompt = self.tokenizer.apply_chat_template(
132
+ text_conv, tokenize=False, add_generation_prompt=add_generation_prompt
133
+ )
134
+ #print(f"Output after apply chat: {prompt}")
135
+
136
+ sr = int(sampling_rate or self.feature_extractor.sampling_rate)
137
+ max_samples = int(self.max_seconds * sr)
138
+ if audio_array.shape[0] > max_samples:
139
+ audio_array = audio_array[:max_samples]
140
+
141
+ hop = int(self.feature_extractor.hop_length)
142
+ if audio_array.shape[0] < 2 * hop:
143
+ audio_array = np.pad(audio_array, (0, 2 * hop - audio_array.shape[0]))
144
+
145
+ feat = self.feature_extractor(
146
+ [audio_array],
147
+ sampling_rate=sr,
148
+ return_attention_mask=True,
149
+ return_tensors="pt",
150
+ **kwargs,
151
+ )
152
+ feats = feat.input_features
153
+ attn = feat.attention_mask
154
+ mel_len = int(attn.sum(-1).item())
155
+
156
+ scale = self.ds_rate * self.stack_factor
157
+ audio_token_len = int(np.ceil(mel_len / float(scale)))
158
+ if audio_token_len <= 0:
159
+ raise ValueError(f"Computed non-positive audio_token_len={audio_token_len} (mel_len={mel_len}).")
160
+
161
+ left, sep, right = prompt.partition(self._marker)
162
+ if sep == "":
163
+ raise ValueError("Internal error: <AUDIO_SPAN> marker missing.")
164
+
165
+ left_ids = self.tokenizer(left, add_special_tokens=False)["input_ids"]
166
+ right_ids = self.tokenizer(right, add_special_tokens=False)["input_ids"]
167
+
168
+ input_ids = left_ids + [self.audio_token_id] * audio_token_len + right_ids
169
+ attention_mask = [1] * len(input_ids)
170
+ audio_token_start_idx = len(left_ids)
171
+
172
+ out = {
173
+ "input_ids": torch.tensor(input_ids, dtype=torch.long),
174
+ "attention_mask": torch.tensor(attention_mask, dtype=torch.long),
175
+
176
+ # Audio side:
177
+ "input_features": feats[0].clone(),
178
+ "audio_lens": torch.tensor([mel_len], dtype=torch.long),
179
+
180
+ # Splicing helpers:
181
+ "audio_token_start_idx": torch.tensor([audio_token_start_idx], dtype=torch.long), # [1]
182
+ "audio_token_len": torch.tensor([audio_token_len], dtype=torch.long), # [1]
183
+
184
+ "audio_batch_size": torch.tensor([1], dtype=torch.long), # [1]
185
+ "audio_is_continuation": torch.tensor([False]), # [1]
186
+ }
187
+
188
+ if tokenize:
189
+ tok = self.tokenizer(
190
+ prompt,
191
+ padding=padding,
192
+ truncation=truncation,
193
+ max_length=max_length,
194
+ return_tensors="pt",
195
+ )
196
+ return out
197
+
198
+ VLFMProcessor.register_for_auto_class()
199
+ AutoProcessor.register(VLFMConfig, VLFMProcessor)
processor.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from typing import List, Dict, Any, Union, Optional
4
+ from transformers.processing_utils import ProcessorMixin
5
+ from transformers import WhisperFeatureExtractor, AutoTokenizer, AutoProcessor
6
+
7
+ from configs import VLFMConfig, build_tokenizer
8
+
9
+
10
+ class VLFMProcessor(ProcessorMixin):
11
+ attributes = ["feature_extractor", "tokenizer"]
12
+ feature_extractor_class = "WhisperFeatureExtractor"
13
+ tokenizer_class = "AutoTokenizer"
14
+
15
+ def __init__(
16
+ self,
17
+ feature_extractor: WhisperFeatureExtractor,
18
+ tokenizer: AutoTokenizer,
19
+ config: VLFMConfig,
20
+ ):
21
+ super().__init__(feature_extractor=feature_extractor, tokenizer=tokenizer)
22
+
23
+ _, self.audio_token_id = build_tokenizer(
24
+ config.text_model_id, config.tokenizer_padding_side
25
+ )
26
+ if self.audio_token_id == tokenizer.unk_token_id:
27
+ raise ValueError(
28
+ "Audio placeholder token is <unk>. "
29
+ "Add a real special token (e.g. <|audio|>) to the tokenizer vocab."
30
+ )
31
+ #print(f"audio_placeholder_token_id: {self.audio_token_id}")
32
+
33
+ if tokenizer.pad_token_id is None:
34
+ tokenizer.pad_token = tokenizer.eos_token
35
+ tokenizer.padding_side = config.tokenizer_padding_side
36
+
37
+
38
+ self.ds_rate = int(config.ds_rate)
39
+ self.stack_factor = int(config.stack_factor)
40
+ self.max_seconds = float(config.max_seconds)
41
+
42
+ self._marker = "<AUDIO_SPAN>"
43
+
44
+ def __call__(self, text: Union[str, List[str]], **kwargs) -> Dict[str, Any]:
45
+ if isinstance(text, str):
46
+ text = [text]
47
+
48
+ def _contains_audio_placeholder(s: str) -> bool:
49
+ ids = self.tokenizer(s, add_special_tokens=False)["input_ids"]
50
+ return self.audio_token_id in ids
51
+
52
+ if any(_contains_audio_placeholder(t) for t in text):
53
+ raise ValueError(
54
+ "Audio placeholder token detected in raw text. "
55
+ "Use `apply_chat_template` with {'type': 'audio', 'array': ...} instead."
56
+ )
57
+
58
+ enc = self.tokenizer(text, **kwargs)
59
+ return enc
60
+
61
+ def _validate_audio(self, x: np.ndarray) -> np.ndarray:
62
+ if not isinstance(x, np.ndarray):
63
+ x = np.asarray(x)
64
+ if x.ndim == 2:
65
+ x = x.mean(axis=0) if x.shape[0] < x.shape[1] else x.mean(axis=1)
66
+ elif x.ndim != 1:
67
+ raise ValueError(f"Expected 1-D mono waveform, got shape={x.shape}")
68
+ if x.size == 0 or not np.isfinite(x).all():
69
+ raise ValueError("Audio is empty or contains NaNs/Infs.")
70
+ return x.astype(np.float32, copy=False)
71
+
72
+ def apply_chat_template(
73
+ self,
74
+ conversation: List[Dict],
75
+ *,
76
+ tokenize: bool = False,
77
+ add_generation_prompt: bool = False,
78
+ padding: bool = False,
79
+ truncation: bool = True,
80
+ max_length: int = 4096,
81
+ sampling_rate: Optional[int] = 16_000,
82
+ return_tensors: str = "pt",
83
+ **kwargs,
84
+ ) -> Dict[str, Any]:
85
+ """
86
+ conversation: list of turns, where each turn is:
87
+ {"role": "user" | "assistant" | "system", "content": str | List[{"type": "text"|"audio", ...}]}
88
+
89
+ Exactly one audio span is supported per conversation.
90
+ """
91
+
92
+ if not isinstance(conversation, list) or not conversation:
93
+ raise ValueError("Conversation must be a non-empty list of turns.")
94
+
95
+ text_conv: List[Dict[str, str]] = []
96
+ audio_array: Optional[np.ndarray] = None
97
+
98
+ for turn in conversation:
99
+ role = turn.get("role", None)
100
+ content = turn.get("content", "")
101
+
102
+ if not isinstance(role, str):
103
+ raise ValueError("Each turn must have a string 'role'.")
104
+ if isinstance(content, str):
105
+ text_conv.append({"role": role, "content": content})
106
+ continue
107
+
108
+ buf: List[str] = []
109
+ for item in content:
110
+ t = item.get("type", None)
111
+ if t == "text":
112
+ buf.append(item.get("text", ""))
113
+ elif t == "audio":
114
+ if audio_array is not None:
115
+ raise ValueError(
116
+ "VLFMProcessor supports exactly one audio span per conversation."
117
+ )
118
+ arr = item.get("array", None)
119
+ if arr is None:
120
+ raise ValueError("Audio item missing 'array'.")
121
+ audio_array = self._validate_audio(arr)
122
+ buf.append(self._marker)
123
+ else:
124
+ raise ValueError(f"Unsupported content type: {t}")
125
+
126
+ text_conv.append({"role": role, "content": "".join(buf)})
127
+
128
+ if audio_array is None:
129
+ raise ValueError("No audio found in conversation (exactly one audio span required).")
130
+
131
+ prompt = self.tokenizer.apply_chat_template(
132
+ text_conv, tokenize=False, add_generation_prompt=add_generation_prompt
133
+ )
134
+ #print(f"Output after apply chat: {prompt}")
135
+
136
+ sr = int(sampling_rate or self.feature_extractor.sampling_rate)
137
+ max_samples = int(self.max_seconds * sr)
138
+ if audio_array.shape[0] > max_samples:
139
+ audio_array = audio_array[:max_samples]
140
+
141
+ hop = int(self.feature_extractor.hop_length)
142
+ if audio_array.shape[0] < 2 * hop:
143
+ audio_array = np.pad(audio_array, (0, 2 * hop - audio_array.shape[0]))
144
+
145
+ feat = self.feature_extractor(
146
+ [audio_array],
147
+ sampling_rate=sr,
148
+ return_attention_mask=True,
149
+ return_tensors="pt",
150
+ **kwargs,
151
+ )
152
+ feats = feat.input_features
153
+ attn = feat.attention_mask
154
+ mel_len = int(attn.sum(-1).item())
155
+
156
+ scale = self.ds_rate * self.stack_factor
157
+ audio_token_len = int(np.ceil(mel_len / float(scale)))
158
+ if audio_token_len <= 0:
159
+ raise ValueError(f"Computed non-positive audio_token_len={audio_token_len} (mel_len={mel_len}).")
160
+
161
+ left, sep, right = prompt.partition(self._marker)
162
+ if sep == "":
163
+ raise ValueError("Internal error: <AUDIO_SPAN> marker missing.")
164
+
165
+ left_ids = self.tokenizer(left, add_special_tokens=False)["input_ids"]
166
+ right_ids = self.tokenizer(right, add_special_tokens=False)["input_ids"]
167
+
168
+ input_ids = left_ids + [self.audio_token_id] * audio_token_len + right_ids
169
+ attention_mask = [1] * len(input_ids)
170
+ audio_token_start_idx = len(left_ids)
171
+
172
+ out = {
173
+ "input_ids": torch.tensor(input_ids, dtype=torch.long),
174
+ "attention_mask": torch.tensor(attention_mask, dtype=torch.long),
175
+
176
+ # Audio side:
177
+ "input_features": feats[0].clone(),
178
+ "audio_lens": torch.tensor([mel_len], dtype=torch.long),
179
+
180
+ # Splicing helpers:
181
+ "audio_token_start_idx": torch.tensor([audio_token_start_idx], dtype=torch.long), # [1]
182
+ "audio_token_len": torch.tensor([audio_token_len], dtype=torch.long), # [1]
183
+
184
+ "audio_batch_size": torch.tensor([1], dtype=torch.long), # [1]
185
+ "audio_is_continuation": torch.tensor([False]), # [1]
186
+ }
187
+
188
+ if tokenize:
189
+ tok = self.tokenizer(
190
+ prompt,
191
+ padding=padding,
192
+ truncation=truncation,
193
+ max_length=max_length,
194
+ return_tensors="pt",
195
+ )
196
+ return out
197
+
198
+ VLFMProcessor.register_for_auto_class()
199
+ AutoProcessor.register(VLFMConfig, VLFMProcessor)
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processor.VLFMProcessor"
4
+ },
5
+ "processor_class": "VLFMProcessor"
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|audio|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|eot_id|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": "<|eot_id|>"
26
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e87771bfea74770d36a1432b5f9ba6d7f611d33fb63681d10c2479540c1591f8
3
+ size 17210106
tokenizer_config.json ADDED
@@ -0,0 +1,2078 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "<|audio|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ }
2059
+ },
2060
+ "additional_special_tokens": [
2061
+ "<|audio|>"
2062
+ ],
2063
+ "auto_map": {
2064
+ "AutoProcessor": "processor.VLFMProcessor"
2065
+ },
2066
+ "bos_token": "<|begin_of_text|>",
2067
+ "clean_up_tokenization_spaces": true,
2068
+ "eos_token": "<|eot_id|>",
2069
+ "extra_special_tokens": {},
2070
+ "model_input_names": [
2071
+ "input_ids",
2072
+ "attention_mask"
2073
+ ],
2074
+ "model_max_length": 131072,
2075
+ "pad_token": "<|eot_id|>",
2076
+ "processor_class": "VLFMProcessor",
2077
+ "tokenizer_class": "PreTrainedTokenizerFast"
2078
+ }