SDNQ
Collection
Models quantized with SDNQ
•
15 items
•
Updated
•
1
4 bit (UINT4 with SVD rank 32) quantization of Qwen/Qwen-Image using SDNQ.
Usage:
pip install git+https://github.com/Disty0/sdnq
import torch
import diffusers
from sdnq import SDNQConfig # import sdnq to register it into diffusers and transformers
pipe = diffusers.QwenImagePipeline.from_pretrained("Disty0/Qwen-Image-SDNQ-uint4-svd-r32", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
positive_magic = {
"en": ", Ultra HD, 4K, cinematic composition.", # for english prompt
"zh": ", 超清,4K,电影级构图." # for chinese prompt
}
# Generate image
prompt = '''A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197". Ultra HD, 4K, cinematic composition'''
negative_prompt = " " # using an empty string if you do not have specific concept to remove
# Generate with different aspect ratios
aspect_ratios = {
"1:1": (1328, 1328),
"16:9": (1664, 928),
"9:16": (928, 1664),
"4:3": (1472, 1140),
"3:4": (1140, 1472),
"3:2": (1584, 1056),
"2:3": (1056, 1584),
}
width, height = aspect_ratios["16:9"]
image = pipe(
prompt=prompt + positive_magic["en"],
negative_prompt=negative_prompt,
width=width,
height=height,
num_inference_steps=50,
true_cfg_scale=4.0,
generator=torch.Generator(device="cpu").manual_seed(42)
).images[0]
image.save("qwen-image-sdnq-uint4-svd-r32.png")
Original BF16 vs SDNQ quantization comparison:
Base model
Qwen/Qwen-Image