Qwen-Image-Distill-LoRA / README_from_modelscope.md
kelseye's picture
Upload folder using huggingface_hub
88671ca verified
metadata
base_model: Qwen/Qwen-Image
frameworks:
  - Pytorch
license: Apache License 2.0
tags:
  - LoRA
vision_foundation: QWEN_IMAGE_20_B

Qwen-Image LoRA 蒸馏加速模型

模型介绍

本模型是 Qwen-Image 的蒸馏加速 LoRA,我们沿用了模型 DiffSynth-Studio/Qwen-Image-Distill-Full 的训练流程,将可训练模型参数改为 LoRA,从而更方便地集成到各类图像生成框架中。

训练框架基于 DiffSynth-Studio 构建,训练数据是由原模型根据 DiffusionDB 中随机抽取的提示词生成的 1.6 万张图,训练程序在 8 * MI308X GPU 上运行了约 1 天。

效果展示

原版模型 原版模型 加速模型
推理步数 40 15 15
CFG scale 4 1 1
前向推理次数 80 15 15
样例1
样例2
样例3

推理代码

git clone https://github.com/modelscope/DiffSynth-Studio.git  
cd DiffSynth-Studio
pip install -e .
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig
from modelscope import snapshot_download
import torch

snapshot_download("DiffSynth-Studio/Qwen-Image-Distill-LoRA", local_dir="models/DiffSynth-Studio/Qwen-Image-Distill-LoRA")
pipe = QwenImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
    ],
    tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/Qwen-Image-Distill-LoRA/model.safetensors")

prompt = "精致肖像,水下少女,蓝裙飘逸,发丝轻扬,光影透澈,气泡环绕,面容恬静,细节精致,梦幻唯美。"
image = pipe(prompt, seed=0, num_inference_steps=15, cfg_scale=1)
image.save("image.jpg")