FLUX.1-Kontext-dev-lora-blingbling / README_from_modelscope.md
kelseye's picture
Upload folder using huggingface_hub
59ea5fa verified
metadata
base_model: MusePublic/FLUX.1-Kontext-Dev@v1
cover_images:
  - _cover_images_/26_blingbling.jpg
  - _cover_images_/9_blingbling.jpg
  - _cover_images_/6_blingbling.jpg
  - _cover_images_/12_blingbling.jpg
  - _cover_images_/15_blingbling.jpg
  - _cover_images_/5_blingbling.jpg
  - _cover_images_/11_blingbling.jpg
frameworks:
  - Pytorch
license: Apache License 2.0
tags:
  - LoRA
  - text-to-image
tasks:
  - text-to-image-synthesis
vision_foundation: FLUX_1

玻璃雕像 - Kontext 图像编辑 LoRA

模型介绍

本 LoRA 模型是基于 Kontext 模型和 DiffSynth-Studio 训练的 LoRA 模型,使用本模型后,可输入指令 Transform into a glass sculpture. 将画面中的主体内容转换为晶莹的玻璃雕像。

模型效果

样例 1 样例 2 样例 3
原图
生成图
样例 4 样例 5 样例 6
原图
生成图

使用说明

本模型基于框架 DiffSynth-Studio 训练,请先安装

git clone https://github.com/modelscope/DiffSynth-Studio.git  
cd DiffSynth-Studio
pip install -e .
import torch
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig
from PIL import Image
from modelscope import snapshot_download

snapshot_download("DiffSynth-Studio/FLUX.1-Kontext-dev-lora-blingbling", cache_dir="./models")
pipe = FluxImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="black-forest-labs/FLUX.1-Kontext-dev", origin_file_pattern="flux1-kontext-dev.safetensors"),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"),
        ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"),
    ],
)
pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/FLUX.1-Kontext-dev-lora-blingbling/model.safetensors", alpha=1)

image = Image.open("your_image.jpg")
image = pipe(
    prompt="Transform into a glass sculpture.",
    kontext_images=image,
    embedded_guidance=2.5,
    seed=0,
)
image.save("output.jpg")