DFloat11 Compressed Model: Qwen/Qwen-Image-Edit-2509
This is a DFloat11 losslessly compressed version of the original Qwen/Qwen-Image-Edit-2509 model. It reduces model size by 32% compared to the original BFloat16 model, while maintaining bit-identical outputs and supporting efficient GPU inference.
π₯π₯π₯ Thanks to DFloat11 compression, Qwen-Image-Edit-2509 can now run on a single 32GB GPU, or on a single 24GB GPU with CPU offloading, while maintaining full model quality. π₯π₯π₯
π Performance Comparison
| Model | Model Size | Peak GPU Memory (1024x1024 image generation) | Image Editing Time (A100 GPU) |
|---|---|---|---|
| Qwen-Image-Edit-2509 (BFloat16) | ~41 GB | OOM | - |
| Qwen-Image-Edit-2509 (DFloat11) | 28.43 GB | 30.20 GB | 102 seconds |
π§ How to Use
Install or upgrade the DFloat11 pip package (installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed):
pip install -U dfloat11[cuda12]Install or upgrade diffusers:
pip install git+https://github.com/huggingface/diffusersSave the following code to a Python file
qwen_image_edit.py:import os import torch import argparse from diffusers import QwenImageEditPlusPipeline from diffusers.utils import load_image from dfloat11 import DFloat11Model parser = argparse.ArgumentParser(description="Qwen Image Edit with DFloat11") parser.add_argument("--image", default="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png", help="Image URL or path") parser.add_argument("--prompt", default="Make this cat an astronaut gazing at planet earth from space", help="Edit prompt") parser.add_argument("--output", default="qwen_image_edit_output.png", help="Output image path") parser.add_argument("--steps", type=int, default=40, help="Number of inference steps") parser.add_argument("--seed", type=int, default=42, help="Random seed") parser.add_argument("--true_cfg_scale", type=float, default=4.0, help="True CFG scale") parser.add_argument("--negative_prompt", default=" ", help="Negative prompt") parser.add_argument("--guidance_scale", type=float, default=1.0, help="Guidance scale") parser.add_argument("--cpu_offload", action="store_true", help="Enable CPU offloading") parser.add_argument("--cpu_offload_blocks", type=int, default=20, help="Number of blocks to offload to CPU for block swapping") parser.add_argument("--cpu_offload_no_pin_memory", action="store_true", help="Disable memory pinning for CPU offloading") args = parser.parse_args() pipeline = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16) DFloat11Model.from_pretrained( "DFloat11/Qwen-Image-Edit-2509-DF11", bfloat16_model=pipeline.transformer, device="cpu", cpu_offload=args.cpu_offload, cpu_offload_blocks=args.cpu_offload_blocks, pin_memory=not args.cpu_offload_no_pin_memory, ) pipeline.enable_model_cpu_offload() image = load_image(args.image) inputs = { "image": [image], "prompt": args.prompt, "generator": torch.manual_seed(args.seed), "true_cfg_scale": args.true_cfg_scale, "negative_prompt": args.negative_prompt, "num_inference_steps": args.steps, "guidance_scale": args.guidance_scale, "num_images_per_prompt": 1, } with torch.inference_mode(): output = pipeline(**inputs) output_image = output.images[0] output_image.save(args.output) print("Image saved at", os.path.abspath(args.output)) max_memory = torch.cuda.max_memory_allocated() print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")To run without CPU offloading (32GB VRAM required):
python qwen_image_edit.pyTo run with CPU offloading (24GB VRAM required):
python qwen_image_edit.py --cpu_offloadIf you are getting out-of-CPU-memory errors, try limiting the number of offloaded blocks or disabling memory-pinning:
# Offload only 16 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster): python qwen_image_edit.py --cpu_offload --cpu_offload_blocks 16 # Disable memory-pinning (the most memory efficient way, but could be slower): python qwen_image_edit.py --cpu_offload --no_pin_memory
π How It Works
We apply Huffman coding to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.
The result is a model that is ~32% smaller, delivers bit-identical outputs, and achieves performance comparable to the original BFloat16 model.
Learn more in our research paper.
π Learn More
- Downloads last month
- 281
Model tree for DFloat11/Qwen-Image-Edit-2509-DF11
Base model
Qwen/Qwen-Image-Edit-2509