NEBULA-HRM-DEMO: Hybrid Photonic + Hierarchical Reasoning Model
NEBULA-HRM is a compact research model (~30.13M params) that explores a hybrid architecture combining a hierarchical reasoning module (HRM) with additional structured processing blocks. This repository contains training scripts, checkpoints, and an example inference pipeline.
Important: internal benchmarks (ARC-AGI/Sudoku/Mazes) are small synthetic subsets intended for quick smoke tests, not official leaderboards. GLUE SST-2 validation accuracy is reported from a short training run in a controlled environment.
Highlights
- Parameters: 30.13M
- Inference speed (local): ~163 samples/sec (batch-dependent)
- Memory footprint (peak, local): ~0.32 GB
- Framework: PyTorch
- Checkpoints:
nebula_hrm_final.pt,nebula_hrm_complete.pth,pytorch_model.bin
Quick Start
Option A: Download files with huggingface_hub and load the PyTorch checkpoint:
import torch
from huggingface_hub import hf_hub_download
import importlib.util
import pathlib
REPO_ID = "Agnuxo/NEBULA-HRM"
# Download model code and weights
code_path = hf_hub_download(REPO_ID, filename="NEBULA_HRM_Complete_Fixed.py")
weights_path = hf_hub_download(REPO_ID, filename="nebula_hrm_complete.pth")
# Dynamic import of model definition
spec = importlib.util.spec_from_file_location("nebula_hrm", code_path)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
# Create config and model (adjust if you maintain a separate config)
config = mod.NebulaHRMConfig()
model = mod.NebulaHRMModel(config)
model.load_state_dict(torch.load(weights_path, map_location="cpu"))
model.eval()
# Dummy inference example (classification)
import torch
input_ids = torch.randint(0, config.vocab_size, (1, config.max_sequence_length))
with torch.no_grad():
outputs = model(input_ids=input_ids, task="classification")
print({k: v.shape if hasattr(v, 'shape') else type(v) for k, v in outputs.items()})
Option B: Use the provided inference.py script:
python inference.py --repo Agnuxo/NEBULA-HRM --task classification --device cpu
Files
NEBULA_HRM_Complete_Fixed.py: full training/inference implementation in PyTorchnebula_hrm_complete.pth: PyTorch checkpoint (state_dict)nebula_hrm_final.pt: additional serialized artifactpytorch_model.bin: standard binary for Hub compatibilityconfig.json,tokenizer_config.json,special_tokens_map.json: auxiliary config filesinference.py: ready-to-run script that pulls artifacts from the Hubmodel_card.md: extended model card
Training Notes
- Environment: Windows 11, Python 3.10, CUDA 11.8, RTX 3090
- Key env vars:
TOKENIZERS_PARALLELISM=false,WANDB_DISABLED=true,OMP_NUM_THREADS=1,PYTHONUTF8=1 - Debugging aids:
CUDA_LAUNCH_BLOCKING=1,TORCH_SHOW_CPP_STACKTRACES=1,PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:256 - Data: GLUE SST-2 (validation accuracy ~0.51 from a brief run). Internal synthetic subsets used for quick sanity checks.
Limitations and Intended Use
- This is a research prototype. Internal benchmarks are not substitutes for official leaderboards.
- Not optimized for production latency; use as a reference for architecture and training loop design.
Citation
@misc{nebula-hrm2025,
title={NEBULA-HRM: Hybrid Photonic + Hierarchical Reasoning Model},
author={Francisco Angulo de Lafuente},
year={2025},
howpublished={Hugging Face},
url={https://huggingface.co/Agnuxo/NEBULA-HRM}
}
Author
Francisco Angulo de Lafuente (Agnuxo)
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- accuracy on ARC-AGI (internal synthetic subset)test set self-reported0.400
- success_rate on Sudoku advanced (internal synthetic subset)test set self-reported0.550
- success_rate on Maze 30x30 (internal synthetic subset)test set self-reported0.745