|
|
import os |
|
|
import cv2 |
|
|
import time |
|
|
import argparse |
|
|
import numpy as np |
|
|
import axengine as axe |
|
|
import _thread |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import ms_ssim |
|
|
|
|
|
from tqdm import tqdm |
|
|
from queue import Queue, Empty |
|
|
|
|
|
parser = argparse.ArgumentParser(description='Interpolation for a pair of images') |
|
|
parser.add_argument('--video', dest='video', type=str, default='./demo.mp4') |
|
|
parser.add_argument('--output', dest='output', type=str, default=None) |
|
|
parser.add_argument('--img', dest='img', type=str, default=None) |
|
|
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video') |
|
|
parser.add_argument('--model', dest='model', type=str, default=None, help='directory with trained model files') |
|
|
parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores') |
|
|
parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video') |
|
|
parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video') |
|
|
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing') |
|
|
parser.add_argument('--fps', dest='fps', type=int, default=None) |
|
|
parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs') |
|
|
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension') |
|
|
parser.add_argument('--exp', dest='exp', type=int, default=1) |
|
|
parser.add_argument('--multi', dest='multi', type=int, default=2) |
|
|
|
|
|
def read_video(video_path): |
|
|
cap = cv2.VideoCapture(video_path) |
|
|
if not cap.isOpened(): |
|
|
raise IOError(f"Cannot open video: {video_path}") |
|
|
try: |
|
|
while True: |
|
|
ret, frame = cap.read() |
|
|
if not ret: |
|
|
break |
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
yield frame |
|
|
finally: |
|
|
cap.release() |
|
|
|
|
|
def clear_write_buffer(user_args, write_buffer, vid_out): |
|
|
cnt = 0 |
|
|
while True: |
|
|
item = write_buffer.get() |
|
|
if item is None: |
|
|
break |
|
|
if user_args.png: |
|
|
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1]) |
|
|
cnt += 1 |
|
|
else: |
|
|
vid_out.write(item[:, :, ::-1]) |
|
|
|
|
|
def build_read_buffer(user_args, read_buffer, videogen): |
|
|
try: |
|
|
for frame in videogen: |
|
|
if not user_args.img is None: |
|
|
frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() |
|
|
if user_args.montage: |
|
|
frame = frame[:, left: left + w] |
|
|
read_buffer.put(frame) |
|
|
except: |
|
|
pass |
|
|
read_buffer.put(None) |
|
|
|
|
|
def pad_image(img, padding): |
|
|
if(args.fp16): |
|
|
return F.pad(img, padding).half() |
|
|
else: |
|
|
return F.pad(img, padding) |
|
|
|
|
|
def run(args): |
|
|
'''onnx inference''' |
|
|
|
|
|
session = axe.InferenceSession(args.model) |
|
|
output_names = [x.name for x in session.get_outputs()] |
|
|
input_name = session.get_inputs()[0].name |
|
|
|
|
|
|
|
|
videoCapture = cv2.VideoCapture(args.video) |
|
|
fps = videoCapture.get(cv2.CAP_PROP_FPS) |
|
|
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) |
|
|
videoCapture.release() |
|
|
if args.fps is None: |
|
|
fpsNotAssigned = True |
|
|
args.fps = fps * args.multi |
|
|
else: |
|
|
fpsNotAssigned = False |
|
|
videogen = read_video(args.video) |
|
|
lastframe = next(videogen) |
|
|
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') |
|
|
video_path_wo_ext, ext = os.path.splitext(args.video) |
|
|
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps)) |
|
|
if args.png == False and fpsNotAssigned == True: |
|
|
print("The audio will be merged after interpolation process") |
|
|
else: |
|
|
print("Will not merge audio because using png or fps flag!") |
|
|
|
|
|
|
|
|
h, w, _ = lastframe.shape |
|
|
vid_out_name = None |
|
|
vid_out = None |
|
|
if args.png: |
|
|
if not os.path.exists('vid_out'): |
|
|
os.mkdir('vid_out') |
|
|
else: |
|
|
if args.output is not None: |
|
|
vid_out_name = args.output |
|
|
else: |
|
|
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.multi, int(np.round(args.fps)), args.ext) |
|
|
vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h)) |
|
|
|
|
|
tmp = max(128, int(128 / args.scale)) |
|
|
ph = ((h - 1) // tmp + 1) * tmp |
|
|
pw = ((w - 1) // tmp + 1) * tmp |
|
|
|
|
|
padding = ((0, 0), (0, 0), (0, ph - h), (0, pw - w)) |
|
|
pbar = tqdm(total=tot_frame, ncols=80) |
|
|
|
|
|
write_buffer = Queue(maxsize=500) |
|
|
read_buffer = Queue(maxsize=500) |
|
|
_thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen)) |
|
|
_thread.start_new_thread(clear_write_buffer, (args, write_buffer, vid_out)) |
|
|
|
|
|
|
|
|
|
|
|
I1 = np.expand_dims(np.transpose(lastframe, (2,0,1)), 0).astype(np.float32) / 255. |
|
|
I1 = np.pad(I1, padding) |
|
|
|
|
|
temp = None |
|
|
while True: |
|
|
if temp is not None: |
|
|
frame = temp |
|
|
temp = None |
|
|
else: |
|
|
frame = read_buffer.get() |
|
|
if frame is None: |
|
|
break |
|
|
I0 = I1 |
|
|
|
|
|
I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255. |
|
|
I1 = np.pad(I1, padding) |
|
|
|
|
|
I0_small = F.interpolate(torch.from_numpy(I0).float(), (32, 32), mode='bilinear', align_corners=False) |
|
|
I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False) |
|
|
ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3]) |
|
|
|
|
|
break_flag = False |
|
|
if ssim > 0.996: |
|
|
frame = read_buffer.get() |
|
|
if frame is None: |
|
|
break_flag = True |
|
|
frame = lastframe |
|
|
else: |
|
|
temp = frame |
|
|
|
|
|
I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255. |
|
|
I1 = np.pad(I1, padding) |
|
|
|
|
|
|
|
|
imgs = np.concatenate((I0, I1), axis=1) |
|
|
I1 = session.run(output_names, {input_name: imgs}) |
|
|
|
|
|
|
|
|
I1 = np.array(I1[-1]) |
|
|
I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False) |
|
|
ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3]) |
|
|
|
|
|
frame = np.clip(I1[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)[:h, :w] |
|
|
|
|
|
if ssim < 0.2: |
|
|
output = [] |
|
|
for i in range(args.multi - 1): |
|
|
output.append(I0) |
|
|
''' |
|
|
output = [] |
|
|
step = 1 / args.multi |
|
|
alpha = 0 |
|
|
for i in range(args.multi - 1): |
|
|
alpha += step |
|
|
beta = 1-alpha |
|
|
output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.) |
|
|
''' |
|
|
else: |
|
|
imgs = np.concatenate((I0, I1), axis=1) |
|
|
output = [session.run(output_names, {input_name: imgs})[-1]] |
|
|
|
|
|
if args.montage: |
|
|
write_buffer.put(np.concatenate((lastframe, lastframe), 1)) |
|
|
for mid in output: |
|
|
|
|
|
mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0) |
|
|
write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1)) |
|
|
else: |
|
|
write_buffer.put(lastframe) |
|
|
for mid in output: |
|
|
|
|
|
mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0) |
|
|
write_buffer.put(mid[:h, :w]) |
|
|
pbar.update(1) |
|
|
lastframe = frame |
|
|
if break_flag: |
|
|
break |
|
|
|
|
|
if args.montage: |
|
|
write_buffer.put(np.concatenate((lastframe, lastframe), 1)) |
|
|
else: |
|
|
write_buffer.put(lastframe) |
|
|
write_buffer.put(None) |
|
|
|
|
|
while(not write_buffer.empty()): |
|
|
time.sleep(0.1) |
|
|
pbar.close() |
|
|
if not vid_out is None: |
|
|
vid_out.release() |
|
|
|
|
|
if __name__ == '__main__': |
|
|
args = parser.parse_args() |
|
|
if args.exp != 1: |
|
|
args.multi = (2 ** args.exp) |
|
|
assert (not args.video is None or not args.img is None) |
|
|
if args.skip: |
|
|
print("skip flag is abandoned, please refer to issue #207.") |
|
|
if args.UHD and args.scale==1.0: |
|
|
args.scale = 0.5 |
|
|
assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0] |
|
|
if not args.img is None: |
|
|
args.png = True |
|
|
|
|
|
run(args) |