File size: 9,337 Bytes
6756f18 89a9603 6756f18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import cv2
import time
import argparse
import numpy as np
import axengine as axe
import _thread
import torch
import torch.nn.functional as F
import ms_ssim
from tqdm import tqdm
from queue import Queue, Empty
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--video', dest='video', type=str, default='./demo.mp4')
parser.add_argument('--output', dest='output', type=str, default=None)
parser.add_argument('--img', dest='img', type=str, default=None)
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video')
parser.add_argument('--model', dest='model', type=str, default=None, help='directory with trained model files')
parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores')
parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video')
parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video')
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
parser.add_argument('--fps', dest='fps', type=int, default=None)
parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs')
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension')
parser.add_argument('--exp', dest='exp', type=int, default=1)
parser.add_argument('--multi', dest='multi', type=int, default=2)
def read_video(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise IOError(f"Cannot open video: {video_path}")
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
yield frame
finally:
cap.release()
def clear_write_buffer(user_args, write_buffer, vid_out):
cnt = 0
while True:
item = write_buffer.get()
if item is None:
break
if user_args.png:
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1])
cnt += 1
else:
vid_out.write(item[:, :, ::-1])
def build_read_buffer(user_args, read_buffer, videogen):
try:
for frame in videogen:
if not user_args.img is None:
frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
if user_args.montage:
frame = frame[:, left: left + w]
read_buffer.put(frame)
except:
pass
read_buffer.put(None)
def pad_image(img, padding):
if(args.fp16):
return F.pad(img, padding).half()
else:
return F.pad(img, padding)
def run(args):
'''onnx inference'''
# model
session = axe.InferenceSession(args.model)
output_names = [x.name for x in session.get_outputs()]
input_name = session.get_inputs()[0].name
# video
videoCapture = cv2.VideoCapture(args.video)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
videoCapture.release()
if args.fps is None:
fpsNotAssigned = True
args.fps = fps * args.multi
else:
fpsNotAssigned = False
videogen = read_video(args.video)
lastframe = next(videogen)
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
video_path_wo_ext, ext = os.path.splitext(args.video)
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps))
if args.png == False and fpsNotAssigned == True:
print("The audio will be merged after interpolation process")
else:
print("Will not merge audio because using png or fps flag!")
#
h, w, _ = lastframe.shape
vid_out_name = None
vid_out = None
if args.png:
if not os.path.exists('vid_out'):
os.mkdir('vid_out')
else:
if args.output is not None:
vid_out_name = args.output
else:
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.multi, int(np.round(args.fps)), args.ext)
vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h))
tmp = max(128, int(128 / args.scale))
ph = ((h - 1) // tmp + 1) * tmp
pw = ((w - 1) // tmp + 1) * tmp
#padding = (0, pw - w, 0, ph - h)
padding = ((0, 0), (0, 0), (0, ph - h), (0, pw - w))
pbar = tqdm(total=tot_frame, ncols=80)
write_buffer = Queue(maxsize=500)
read_buffer = Queue(maxsize=500)
_thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen))
_thread.start_new_thread(clear_write_buffer, (args, write_buffer, vid_out))
#device = 'cpu'
#I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = np.expand_dims(np.transpose(lastframe, (2,0,1)), 0).astype(np.float32) / 255.
I1 = np.pad(I1, padding)
temp = None # save lastframe when processing static frame
while True:
if temp is not None:
frame = temp
temp = None
else:
frame = read_buffer.get()
if frame is None:
break
I0 = I1
#I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255.
I1 = np.pad(I1, padding)
I0_small = F.interpolate(torch.from_numpy(I0).float(), (32, 32), mode='bilinear', align_corners=False)
I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False)
ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3])
break_flag = False
if ssim > 0.996: #0.996
frame = read_buffer.get() # read a new frame
if frame is None:
break_flag = True
frame = lastframe
else:
temp = frame
#I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255.
I1 = np.pad(I1, padding)
#imgs = torch.cat((I0, I1), 1).cpu().numpy()
imgs = np.concatenate((I0, I1), axis=1)
I1 = session.run(output_names, {input_name: imgs})
#I1 = torch.from_numpy(I1[-1])
I1 = np.array(I1[-1])
I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False)
ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3])
#frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
frame = np.clip(I1[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)[:h, :w]
if ssim < 0.2:
output = []
for i in range(args.multi - 1):
output.append(I0)
'''
output = []
step = 1 / args.multi
alpha = 0
for i in range(args.multi - 1):
alpha += step
beta = 1-alpha
output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.)
'''
else:
imgs = np.concatenate((I0, I1), axis=1)
output = [session.run(output_names, {input_name: imgs})[-1]]
if args.montage:
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
for mid in output:
#mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)
write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1))
else:
write_buffer.put(lastframe)
for mid in output:
#mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)
write_buffer.put(mid[:h, :w])
pbar.update(1)
lastframe = frame
if break_flag:
break
if args.montage:
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
else:
write_buffer.put(lastframe)
write_buffer.put(None)
while(not write_buffer.empty()):
time.sleep(0.1)
pbar.close()
if not vid_out is None:
vid_out.release()
if __name__ == '__main__':
args = parser.parse_args()
if args.exp != 1:
args.multi = (2 ** args.exp)
assert (not args.video is None or not args.img is None)
if args.skip:
print("skip flag is abandoned, please refer to issue #207.")
if args.UHD and args.scale==1.0:
args.scale = 0.5
assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0]
if not args.img is None:
args.png = True
run(args) |