File size: 9,337 Bytes
6756f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a9603
6756f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import cv2
import time
import argparse
import numpy as np
import axengine as axe
import _thread
import torch
import torch.nn.functional as F
import ms_ssim

from tqdm import tqdm
from queue import Queue, Empty

parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--video', dest='video', type=str, default='./demo.mp4')
parser.add_argument('--output', dest='output', type=str, default=None)
parser.add_argument('--img', dest='img', type=str, default=None)
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video')
parser.add_argument('--model', dest='model', type=str, default=None, help='directory with trained model files')
parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores')
parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video')
parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video')
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
parser.add_argument('--fps', dest='fps', type=int, default=None)
parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs')
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension')
parser.add_argument('--exp', dest='exp', type=int, default=1)
parser.add_argument('--multi', dest='multi', type=int, default=2)

def read_video(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise IOError(f"Cannot open video: {video_path}")
    try:
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  
            yield frame
    finally:
        cap.release()
    
def clear_write_buffer(user_args, write_buffer, vid_out):
    cnt = 0
    while True:
        item = write_buffer.get()
        if item is None:
            break
        if user_args.png:
            cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1])
            cnt += 1
        else:
            vid_out.write(item[:, :, ::-1])

def build_read_buffer(user_args, read_buffer, videogen):
    try:
        for frame in videogen:
            if not user_args.img is None:
                frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
            if user_args.montage:
                frame = frame[:, left: left + w]
            read_buffer.put(frame)
    except:
        pass
    read_buffer.put(None)
    
def pad_image(img, padding):
    if(args.fp16):
        return F.pad(img, padding).half()
    else:
        return F.pad(img, padding)
    
def run(args):
    '''onnx inference'''
    # model
    session = axe.InferenceSession(args.model)
    output_names = [x.name for x in session.get_outputs()]
    input_name = session.get_inputs()[0].name 
    
    # video
    videoCapture = cv2.VideoCapture(args.video)
    fps = videoCapture.get(cv2.CAP_PROP_FPS)
    tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
    videoCapture.release()
    if args.fps is None:
        fpsNotAssigned = True
        args.fps = fps * args.multi
    else:
        fpsNotAssigned = False
    videogen = read_video(args.video)
    lastframe = next(videogen)
    fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
    video_path_wo_ext, ext = os.path.splitext(args.video)
    print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps))
    if args.png == False and fpsNotAssigned == True:
        print("The audio will be merged after interpolation process")
    else:
        print("Will not merge audio because using png or fps flag!")

    # 
    h, w, _ = lastframe.shape
    vid_out_name = None
    vid_out = None
    if args.png:
        if not os.path.exists('vid_out'):
            os.mkdir('vid_out')
    else:
        if args.output is not None:
            vid_out_name = args.output
        else:
            vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.multi, int(np.round(args.fps)), args.ext)
        vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h))
    
    tmp = max(128, int(128 / args.scale))
    ph = ((h - 1) // tmp + 1) * tmp
    pw = ((w - 1) // tmp + 1) * tmp
    #padding = (0, pw - w, 0, ph - h)
    padding = ((0, 0), (0, 0), (0, ph - h), (0, pw - w))
    pbar = tqdm(total=tot_frame, ncols=80)
    
    write_buffer = Queue(maxsize=500)
    read_buffer = Queue(maxsize=500)
    _thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen))
    _thread.start_new_thread(clear_write_buffer, (args, write_buffer, vid_out))

    #device = 'cpu'
    #I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
    I1 = np.expand_dims(np.transpose(lastframe, (2,0,1)), 0).astype(np.float32) / 255.
    I1 = np.pad(I1, padding)
    
    temp = None # save lastframe when processing static frame
    while True:
        if temp is not None:
            frame = temp
            temp = None
        else:
            frame = read_buffer.get()
        if frame is None:
            break
        I0 = I1
        #I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
        I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255.
        I1 = np.pad(I1, padding)

        I0_small = F.interpolate(torch.from_numpy(I0).float(), (32, 32), mode='bilinear', align_corners=False)
        I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False)
        ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3])

        break_flag = False
        if ssim > 0.996:  #0.996
            frame = read_buffer.get() # read a new frame
            if frame is None:
                break_flag = True
                frame = lastframe
            else:
                temp = frame
            #I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
            I1 = np.expand_dims(np.transpose(frame, (2,0,1)), 0).astype(np.float32) / 255.
            I1 = np.pad(I1, padding)

            #imgs = torch.cat((I0, I1), 1).cpu().numpy()
            imgs = np.concatenate((I0, I1), axis=1)
            I1 = session.run(output_names, {input_name: imgs})

            #I1 = torch.from_numpy(I1[-1])
            I1 = np.array(I1[-1])
            I1_small = F.interpolate(torch.from_numpy(I1).float(), (32, 32), mode='bilinear', align_corners=False)
            ssim = ms_ssim.ssim_matlab(I0_small[:, :3], I1_small[:, :3])
            #frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
            frame = np.clip(I1[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)[:h, :w]
            
        if ssim < 0.2:
            output = []
            for i in range(args.multi - 1):
                output.append(I0)
            '''
            output = []
            step = 1 / args.multi
            alpha = 0
            for i in range(args.multi - 1):
                alpha += step
                beta = 1-alpha
                output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.)
            '''
        else:
            imgs = np.concatenate((I0, I1), axis=1)
            output = [session.run(output_names, {input_name: imgs})[-1]]

        if args.montage:
            write_buffer.put(np.concatenate((lastframe, lastframe), 1))
            for mid in output:
                #mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
                mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)
                write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1))
        else:
            write_buffer.put(lastframe)
            for mid in output:
                #mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
                mid = np.clip(mid[0] * 255, 0, 255).astype(np.uint8).transpose(1, 2, 0)
                write_buffer.put(mid[:h, :w])
        pbar.update(1)
        lastframe = frame
        if break_flag:
            break
        
    if args.montage:
        write_buffer.put(np.concatenate((lastframe, lastframe), 1))
    else:
        write_buffer.put(lastframe)      
    write_buffer.put(None)

    while(not write_buffer.empty()):
        time.sleep(0.1)
    pbar.close()
    if not vid_out is None:
        vid_out.release()
        
if __name__ == '__main__':
    args = parser.parse_args()
    if args.exp != 1:
        args.multi = (2 ** args.exp)
    assert (not args.video is None or not args.img is None)
    if args.skip:
        print("skip flag is abandoned, please refer to issue #207.")
    if args.UHD and args.scale==1.0:
        args.scale = 0.5
    assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0]
    if not args.img is None:
        args.png = True
        
    run(args)