Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +1 -1
- README.md +114 -147
- config.json +12 -14
- model.safetensors +2 -2
- sentence_bert_config.json +1 -1
- special_tokens_map.json +19 -5
- tokenizer.json +0 -0
- tokenizer_config.json +26 -18
- vocab.txt +5 -0
1_Pooling/config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"word_embedding_dimension":
|
| 3 |
"pooling_mode_cls_token": false,
|
| 4 |
"pooling_mode_mean_tokens": true,
|
| 5 |
"pooling_mode_max_tokens": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
"pooling_mode_cls_token": false,
|
| 4 |
"pooling_mode_mean_tokens": true,
|
| 5 |
"pooling_mode_max_tokens": false,
|
README.md
CHANGED
|
@@ -5,78 +5,77 @@ tags:
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
-
- dataset_size:
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
|
|
|
| 10 |
widget:
|
| 11 |
-
- source_sentence:
|
| 12 |
sentences:
|
| 13 |
-
- The
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
- The
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
- The
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
- source_sentence: I’m starting my day with a clean space today ◽
|
| 24 |
sentences:
|
| 25 |
-
- The
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
- source_sentence:
|
| 35 |
sentences:
|
| 36 |
-
- The
|
| 37 |
-
It
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
used when expressing feeling drained or overwhelmed.
|
| 45 |
-
- source_sentence: Winter days are best spent carving through the powder.
|
| 46 |
sentences:
|
| 47 |
-
- The
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
- The
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
sentences:
|
| 57 |
-
- The
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
pipeline_tag: sentence-similarity
|
| 66 |
library_name: sentence-transformers
|
| 67 |
---
|
| 68 |
|
| 69 |
-
# SentenceTransformer
|
| 70 |
|
| 71 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
| 72 |
|
| 73 |
## Model Details
|
| 74 |
|
| 75 |
### Model Description
|
| 76 |
- **Model Type:** Sentence Transformer
|
| 77 |
-
|
| 78 |
-
- **Maximum Sequence Length:**
|
| 79 |
-
- **Output Dimensionality:**
|
| 80 |
- **Similarity Function:** Cosine Similarity
|
| 81 |
<!-- - **Training Dataset:** Unknown -->
|
| 82 |
<!-- - **Language:** Unknown -->
|
|
@@ -92,8 +91,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps
|
|
| 92 |
|
| 93 |
```
|
| 94 |
SentenceTransformer(
|
| 95 |
-
(0): Transformer({'max_seq_length':
|
| 96 |
-
(1): Pooling({'word_embedding_dimension':
|
| 97 |
(2): Normalize()
|
| 98 |
)
|
| 99 |
```
|
|
@@ -116,20 +115,20 @@ from sentence_transformers import SentenceTransformer
|
|
| 116 |
model = SentenceTransformer("zoharzaig/emoji-prediction-model")
|
| 117 |
# Run inference
|
| 118 |
sentences = [
|
| 119 |
-
'
|
| 120 |
-
'The
|
| 121 |
-
'The
|
| 122 |
]
|
| 123 |
embeddings = model.encode(sentences)
|
| 124 |
print(embeddings.shape)
|
| 125 |
-
# [3,
|
| 126 |
|
| 127 |
# Get the similarity scores for the embeddings
|
| 128 |
similarities = model.similarity(embeddings, embeddings)
|
| 129 |
print(similarities)
|
| 130 |
-
# tensor([[ 1.0000, 0.
|
| 131 |
-
# [ 0.
|
| 132 |
-
# [
|
| 133 |
```
|
| 134 |
|
| 135 |
<!--
|
|
@@ -174,19 +173,19 @@ You can finetune this model on your own dataset.
|
|
| 174 |
|
| 175 |
#### Unnamed Dataset
|
| 176 |
|
| 177 |
-
* Size:
|
| 178 |
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
| 179 |
* Approximate statistics based on the first 1000 samples:
|
| 180 |
-
| | sentence_0
|
| 181 |
-
|
| 182 |
-
| type | string
|
| 183 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 11.
|
| 184 |
* Samples:
|
| 185 |
-
| sentence_0
|
| 186 |
-
|
| 187 |
-
| <code>
|
| 188 |
-
| <code>
|
| 189 |
-
| <code>The
|
| 190 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 191 |
```json
|
| 192 |
{
|
|
@@ -329,79 +328,47 @@ You can finetune this model on your own dataset.
|
|
| 329 |
### Training Logs
|
| 330 |
| Epoch | Step | Training Loss |
|
| 331 |
|:------:|:-----:|:-------------:|
|
| 332 |
-
| 0.
|
| 333 |
-
| 0.
|
| 334 |
-
| 0.
|
| 335 |
-
| 0.
|
| 336 |
-
| 0.
|
| 337 |
-
| 0.
|
| 338 |
-
| 0.
|
| 339 |
-
| 0.
|
| 340 |
-
|
|
| 341 |
-
|
|
| 342 |
-
|
|
| 343 |
-
|
|
| 344 |
-
|
|
| 345 |
-
|
|
| 346 |
-
| 1.
|
| 347 |
-
| 1.
|
| 348 |
-
|
|
| 349 |
-
|
|
| 350 |
-
|
|
| 351 |
-
|
|
| 352 |
-
|
|
| 353 |
-
|
|
| 354 |
-
|
|
| 355 |
-
|
|
| 356 |
-
|
|
| 357 |
-
|
|
| 358 |
-
|
|
| 359 |
-
|
|
| 360 |
-
|
|
| 361 |
-
|
|
| 362 |
-
|
|
| 363 |
-
|
|
| 364 |
-
|
|
| 365 |
-
|
|
| 366 |
-
|
|
| 367 |
-
|
|
| 368 |
-
|
|
| 369 |
-
|
|
| 370 |
-
|
|
| 371 |
-
|
|
| 372 |
-
|
|
| 373 |
-
| 2.8505 | 21000 | 0.1877 |
|
| 374 |
-
| 2.9184 | 21500 | 0.2004 |
|
| 375 |
-
| 2.9863 | 22000 | 0.1881 |
|
| 376 |
-
| 3.0542 | 22500 | 0.1612 |
|
| 377 |
-
| 3.1220 | 23000 | 0.1523 |
|
| 378 |
-
| 3.1899 | 23500 | 0.1558 |
|
| 379 |
-
| 3.2578 | 24000 | 0.1513 |
|
| 380 |
-
| 3.3256 | 24500 | 0.1691 |
|
| 381 |
-
| 3.3935 | 25000 | 0.1597 |
|
| 382 |
-
| 3.4614 | 25500 | 0.1557 |
|
| 383 |
-
| 3.5293 | 26000 | 0.1582 |
|
| 384 |
-
| 3.5971 | 26500 | 0.1652 |
|
| 385 |
-
| 3.6650 | 27000 | 0.1599 |
|
| 386 |
-
| 3.7329 | 27500 | 0.1524 |
|
| 387 |
-
| 3.8007 | 28000 | 0.1646 |
|
| 388 |
-
| 3.8686 | 28500 | 0.1566 |
|
| 389 |
-
| 3.9365 | 29000 | 0.1532 |
|
| 390 |
-
| 4.0043 | 29500 | 0.153 |
|
| 391 |
-
| 4.0722 | 30000 | 0.1397 |
|
| 392 |
-
| 4.1401 | 30500 | 0.146 |
|
| 393 |
-
| 4.2080 | 31000 | 0.137 |
|
| 394 |
-
| 4.2758 | 31500 | 0.1272 |
|
| 395 |
-
| 4.3437 | 32000 | 0.1353 |
|
| 396 |
-
| 4.4116 | 32500 | 0.143 |
|
| 397 |
-
| 4.4794 | 33000 | 0.1285 |
|
| 398 |
-
| 4.5473 | 33500 | 0.1417 |
|
| 399 |
-
| 4.6152 | 34000 | 0.1302 |
|
| 400 |
-
| 4.6830 | 34500 | 0.1275 |
|
| 401 |
-
| 4.7509 | 35000 | 0.1331 |
|
| 402 |
-
| 4.8188 | 35500 | 0.1334 |
|
| 403 |
-
| 4.8867 | 36000 | 0.1333 |
|
| 404 |
-
| 4.9545 | 36500 | 0.1317 |
|
| 405 |
|
| 406 |
|
| 407 |
### Framework Versions
|
|
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
+
- dataset_size:65883
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
| 11 |
widget:
|
| 12 |
+
- source_sentence: The calmness of my service dog is so comforting.
|
| 13 |
sentences:
|
| 14 |
+
- The service dog emoji depicts a dog with a harness, denoting its role as a working
|
| 15 |
+
animal trained to assist individuals with disabilities. It is commonly used to
|
| 16 |
+
represent service animals, independence, and support for those in need.
|
| 17 |
+
- The 🧑🌾 emoji is commonly used to represent a farmer or someone working in agriculture.
|
| 18 |
+
It can be used in conversations related to farming, crops, gardening, and rural
|
| 19 |
+
lifestyle.
|
| 20 |
+
- The oil drum emoji is used to represent oil, petroleum, fuel, or other liquids
|
| 21 |
+
stored in a drum container. It can also symbolize industrial processes, mechanics,
|
| 22 |
+
or transportation related to oil and fuel.
|
| 23 |
+
- source_sentence: Sipping water from this fountain always leaves a good taste.
|
|
|
|
| 24 |
sentences:
|
| 25 |
+
- The ⛲ emoji is typically used to represent a fountain, flowing water, or a source
|
| 26 |
+
of water. It can also symbolize tranquility, relaxation, and a peaceful atmosphere.
|
| 27 |
+
- This emoji is used to represent a woman engaging in the sport of mountain biking.
|
| 28 |
+
It can be used in contexts related to sports, outdoor activities, or simply to
|
| 29 |
+
convey a sense of adventure and thrill.
|
| 30 |
+
- The crystal ball emoji is often used to symbolize magic, fortune-telling, mysticism,
|
| 31 |
+
or the unknown. It can also represent guidance, predictions, or future insights.
|
| 32 |
+
This emoji can be used in conversations related to spirituality, fantasy, astrology,
|
| 33 |
+
and predictions.
|
| 34 |
+
- source_sentence: The bookstore had some amazing finds today!
|
| 35 |
sentences:
|
| 36 |
+
- 'The keycap: 4 emoji is used to represent the number 4 in a clear and concise
|
| 37 |
+
way. It is often used in numerical sequences or lists.'
|
| 38 |
+
- The open book emoji is commonly used to represent reading, studying, learning,
|
| 39 |
+
education, or books in general. It can also be used to symbolize wisdom, knowledge,
|
| 40 |
+
or literature.
|
| 41 |
+
- The deer emoji is often used to symbolize grace, beauty, and tranquility. It can
|
| 42 |
+
also represent a love for nature and wildlife.
|
| 43 |
+
- source_sentence: Hair appointment went perfectly, feeling confident!
|
|
|
|
|
|
|
| 44 |
sentences:
|
| 45 |
+
- The emoji of a woman getting a haircut is often used to represent beauty salons,
|
| 46 |
+
haircuts, and hairstyles. It can also be used to signify self-care routines or
|
| 47 |
+
pampering sessions.
|
| 48 |
+
- The woman climbing emoji is used to represent rock climbing, outdoor adventure,
|
| 49 |
+
strength, and determination. It can be used when talking about physical activities,
|
| 50 |
+
hobbies, or overcoming challenges.
|
| 51 |
+
- The 💏 emoji is often used to represent a kiss between two individuals, such as
|
| 52 |
+
a romantic gesture or expression of love. It can also symbolize affection, intimacy,
|
| 53 |
+
or a moment of connection between partners.
|
| 54 |
+
- source_sentence: Bald and beautiful, just how I like it.
|
| 55 |
sentences:
|
| 56 |
+
- 'The woman: bald emoji is used to represent a female character without hair. It
|
| 57 |
+
can be used to show support for people undergoing chemotherapy, to represent beauty
|
| 58 |
+
in diverse forms, or simply to depict a bald woman.'
|
| 59 |
+
- The woman golfing emoji is typically used to represent a female person playing
|
| 60 |
+
golf. It can be used in the context of sports, leisure, physical activity, or
|
| 61 |
+
any mention of golf. It is often used in social media posts related to golfing
|
| 62 |
+
or to express enjoyment of the sport.
|
| 63 |
+
- The dog face emoji is commonly used to represent dogs, pets, loyalty, and cuteness.
|
| 64 |
pipeline_tag: sentence-similarity
|
| 65 |
library_name: sentence-transformers
|
| 66 |
---
|
| 67 |
|
| 68 |
+
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
| 69 |
|
| 70 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 71 |
|
| 72 |
## Model Details
|
| 73 |
|
| 74 |
### Model Description
|
| 75 |
- **Model Type:** Sentence Transformer
|
| 76 |
+
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 12e86a3c702fc3c50205a8db88f0ec7c0b6b94a0 -->
|
| 77 |
+
- **Maximum Sequence Length:** 384 tokens
|
| 78 |
+
- **Output Dimensionality:** 768 dimensions
|
| 79 |
- **Similarity Function:** Cosine Similarity
|
| 80 |
<!-- - **Training Dataset:** Unknown -->
|
| 81 |
<!-- - **Language:** Unknown -->
|
|
|
|
| 91 |
|
| 92 |
```
|
| 93 |
SentenceTransformer(
|
| 94 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
|
| 95 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 96 |
(2): Normalize()
|
| 97 |
)
|
| 98 |
```
|
|
|
|
| 115 |
model = SentenceTransformer("zoharzaig/emoji-prediction-model")
|
| 116 |
# Run inference
|
| 117 |
sentences = [
|
| 118 |
+
'Bald and beautiful, just how I like it.',
|
| 119 |
+
'The woman: bald emoji is used to represent a female character without hair. It can be used to show support for people undergoing chemotherapy, to represent beauty in diverse forms, or simply to depict a bald woman.',
|
| 120 |
+
'The dog face emoji is commonly used to represent dogs, pets, loyalty, and cuteness.',
|
| 121 |
]
|
| 122 |
embeddings = model.encode(sentences)
|
| 123 |
print(embeddings.shape)
|
| 124 |
+
# [3, 768]
|
| 125 |
|
| 126 |
# Get the similarity scores for the embeddings
|
| 127 |
similarities = model.similarity(embeddings, embeddings)
|
| 128 |
print(similarities)
|
| 129 |
+
# tensor([[ 1.0000, 0.4778, 0.0503],
|
| 130 |
+
# [ 0.4778, 1.0000, -0.0784],
|
| 131 |
+
# [ 0.0503, -0.0784, 1.0000]])
|
| 132 |
```
|
| 133 |
|
| 134 |
<!--
|
|
|
|
| 173 |
|
| 174 |
#### Unnamed Dataset
|
| 175 |
|
| 176 |
+
* Size: 65,883 training samples
|
| 177 |
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
| 178 |
* Approximate statistics based on the first 1000 samples:
|
| 179 |
+
| | sentence_0 | sentence_1 |
|
| 180 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
| 181 |
+
| type | string | string |
|
| 182 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.9 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 45.38 tokens</li><li>max: 85 tokens</li></ul> |
|
| 183 |
* Samples:
|
| 184 |
+
| sentence_0 | sentence_1 |
|
| 185 |
+
|:-----------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 186 |
+
| <code>Still cooking breakfast.</code> | <code>The hourglass not done emoji ⏳ is often used to represent the passing of time, a sense of urgency, or a countdown. It can also symbolize patience and waiting for something to be completed or resolved.</code> |
|
| 187 |
+
| <code>How do you feel about GMOs?</code> | <code>The woman scientist emoji is used to represent a female scientist or researcher. It can be used in the context of science, research, discovery, and academia.</code> |
|
| 188 |
+
| <code>The clear waters of Aruba look amazing!</code> | <code>The flag of Aruba emoji is used to represent the country of Aruba. Aruba is known for its beautiful beaches, warm weather, and vibrant culture. It is a popular tourist destination in the Caribbean.</code> |
|
| 189 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 190 |
```json
|
| 191 |
{
|
|
|
|
| 328 |
### Training Logs
|
| 329 |
| Epoch | Step | Training Loss |
|
| 330 |
|:------:|:-----:|:-------------:|
|
| 331 |
+
| 0.1214 | 500 | 1.1886 |
|
| 332 |
+
| 0.2428 | 1000 | 1.0327 |
|
| 333 |
+
| 0.3643 | 1500 | 0.9711 |
|
| 334 |
+
| 0.4857 | 2000 | 0.9062 |
|
| 335 |
+
| 0.6071 | 2500 | 0.8915 |
|
| 336 |
+
| 0.7285 | 3000 | 0.8699 |
|
| 337 |
+
| 0.8499 | 3500 | 0.8658 |
|
| 338 |
+
| 0.9713 | 4000 | 0.8191 |
|
| 339 |
+
| 1.0928 | 4500 | 0.7382 |
|
| 340 |
+
| 1.2142 | 5000 | 0.7059 |
|
| 341 |
+
| 1.3356 | 5500 | 0.7004 |
|
| 342 |
+
| 1.4570 | 6000 | 0.7012 |
|
| 343 |
+
| 1.5784 | 6500 | 0.6842 |
|
| 344 |
+
| 1.6999 | 7000 | 0.6994 |
|
| 345 |
+
| 1.8213 | 7500 | 0.6832 |
|
| 346 |
+
| 1.9427 | 8000 | 0.6597 |
|
| 347 |
+
| 2.0641 | 8500 | 0.5964 |
|
| 348 |
+
| 2.1855 | 9000 | 0.5506 |
|
| 349 |
+
| 2.3069 | 9500 | 0.5155 |
|
| 350 |
+
| 2.4284 | 10000 | 0.5531 |
|
| 351 |
+
| 2.5498 | 10500 | 0.5439 |
|
| 352 |
+
| 2.6712 | 11000 | 0.5471 |
|
| 353 |
+
| 2.7926 | 11500 | 0.5492 |
|
| 354 |
+
| 2.9140 | 12000 | 0.5331 |
|
| 355 |
+
| 3.0355 | 12500 | 0.5052 |
|
| 356 |
+
| 3.1569 | 13000 | 0.4309 |
|
| 357 |
+
| 3.2783 | 13500 | 0.4162 |
|
| 358 |
+
| 3.3997 | 14000 | 0.4268 |
|
| 359 |
+
| 3.5211 | 14500 | 0.4142 |
|
| 360 |
+
| 3.6425 | 15000 | 0.421 |
|
| 361 |
+
| 3.7640 | 15500 | 0.4126 |
|
| 362 |
+
| 3.8854 | 16000 | 0.4324 |
|
| 363 |
+
| 4.0068 | 16500 | 0.4098 |
|
| 364 |
+
| 4.1282 | 17000 | 0.3335 |
|
| 365 |
+
| 4.2496 | 17500 | 0.3401 |
|
| 366 |
+
| 4.3711 | 18000 | 0.3317 |
|
| 367 |
+
| 4.4925 | 18500 | 0.3448 |
|
| 368 |
+
| 4.6139 | 19000 | 0.336 |
|
| 369 |
+
| 4.7353 | 19500 | 0.3299 |
|
| 370 |
+
| 4.8567 | 20000 | 0.3601 |
|
| 371 |
+
| 4.9781 | 20500 | 0.3347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
|
| 374 |
### Framework Versions
|
config.json
CHANGED
|
@@ -1,25 +1,23 @@
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
-
"
|
| 4 |
],
|
| 5 |
"attention_probs_dropout_prob": 0.1,
|
| 6 |
-
"
|
| 7 |
-
"
|
| 8 |
"hidden_act": "gelu",
|
| 9 |
"hidden_dropout_prob": 0.1,
|
| 10 |
-
"hidden_size":
|
| 11 |
"initializer_range": 0.02,
|
| 12 |
-
"intermediate_size":
|
| 13 |
-
"layer_norm_eps": 1e-
|
| 14 |
-
"max_position_embeddings":
|
| 15 |
-
"model_type": "
|
| 16 |
"num_attention_heads": 12,
|
| 17 |
-
"num_hidden_layers":
|
| 18 |
-
"pad_token_id":
|
| 19 |
-
"
|
| 20 |
"torch_dtype": "float32",
|
| 21 |
"transformers_version": "4.53.2",
|
| 22 |
-
"
|
| 23 |
-
"use_cache": true,
|
| 24 |
-
"vocab_size": 30522
|
| 25 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
+
"MPNetModel"
|
| 4 |
],
|
| 5 |
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"eos_token_id": 2,
|
| 8 |
"hidden_act": "gelu",
|
| 9 |
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 768,
|
| 11 |
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 3072,
|
| 13 |
+
"layer_norm_eps": 1e-05,
|
| 14 |
+
"max_position_embeddings": 514,
|
| 15 |
+
"model_type": "mpnet",
|
| 16 |
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 1,
|
| 19 |
+
"relative_attention_num_buckets": 32,
|
| 20 |
"torch_dtype": "float32",
|
| 21 |
"transformers_version": "4.53.2",
|
| 22 |
+
"vocab_size": 30527
|
|
|
|
|
|
|
| 23 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa9de72750b38df7da74d7c01d581d81f948c4816a7cea04c1308b9432291ad5
|
| 3 |
+
size 437967672
|
sentence_bert_config.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"max_seq_length":
|
| 3 |
"do_lower_case": false
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"max_seq_length": 384,
|
| 3 |
"do_lower_case": false
|
| 4 |
}
|
special_tokens_map.json
CHANGED
|
@@ -1,27 +1,41 @@
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"cls_token": {
|
| 3 |
-
"content": "
|
| 4 |
"lstrip": false,
|
| 5 |
"normalized": false,
|
| 6 |
"rstrip": false,
|
| 7 |
"single_word": false
|
| 8 |
},
|
| 9 |
-
"
|
| 10 |
-
"content": "
|
| 11 |
"lstrip": false,
|
| 12 |
"normalized": false,
|
| 13 |
"rstrip": false,
|
| 14 |
"single_word": false
|
| 15 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"pad_token": {
|
| 17 |
-
"content": "
|
| 18 |
"lstrip": false,
|
| 19 |
"normalized": false,
|
| 20 |
"rstrip": false,
|
| 21 |
"single_word": false
|
| 22 |
},
|
| 23 |
"sep_token": {
|
| 24 |
-
"content": "
|
| 25 |
"lstrip": false,
|
| 26 |
"normalized": false,
|
| 27 |
"rstrip": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
"lstrip": false,
|
| 12 |
"normalized": false,
|
| 13 |
"rstrip": false,
|
| 14 |
"single_word": false
|
| 15 |
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
"lstrip": false,
|
| 19 |
"normalized": false,
|
| 20 |
"rstrip": false,
|
| 21 |
"single_word": false
|
| 22 |
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
"lstrip": false,
|
| 33 |
"normalized": false,
|
| 34 |
"rstrip": false,
|
| 35 |
"single_word": false
|
| 36 |
},
|
| 37 |
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
"lstrip": false,
|
| 40 |
"normalized": false,
|
| 41 |
"rstrip": false,
|
tokenizer.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
CHANGED
|
@@ -1,64 +1,72 @@
|
|
| 1 |
{
|
| 2 |
"added_tokens_decoder": {
|
| 3 |
"0": {
|
| 4 |
-
"content": "
|
| 5 |
"lstrip": false,
|
| 6 |
"normalized": false,
|
| 7 |
"rstrip": false,
|
| 8 |
"single_word": false,
|
| 9 |
"special": true
|
| 10 |
},
|
| 11 |
-
"
|
| 12 |
-
"content": "
|
| 13 |
"lstrip": false,
|
| 14 |
"normalized": false,
|
| 15 |
"rstrip": false,
|
| 16 |
"single_word": false,
|
| 17 |
"special": true
|
| 18 |
},
|
| 19 |
-
"
|
| 20 |
-
"content": "
|
| 21 |
"lstrip": false,
|
| 22 |
"normalized": false,
|
| 23 |
"rstrip": false,
|
| 24 |
"single_word": false,
|
| 25 |
"special": true
|
| 26 |
},
|
| 27 |
-
"
|
| 28 |
-
"content": "
|
| 29 |
"lstrip": false,
|
| 30 |
-
"normalized":
|
| 31 |
"rstrip": false,
|
| 32 |
"single_word": false,
|
| 33 |
"special": true
|
| 34 |
},
|
| 35 |
-
"
|
| 36 |
-
"content": "[
|
| 37 |
"lstrip": false,
|
| 38 |
"normalized": false,
|
| 39 |
"rstrip": false,
|
| 40 |
"single_word": false,
|
| 41 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
}
|
| 43 |
},
|
|
|
|
| 44 |
"clean_up_tokenization_spaces": false,
|
| 45 |
-
"cls_token": "
|
| 46 |
-
"do_basic_tokenize": true,
|
| 47 |
"do_lower_case": true,
|
|
|
|
| 48 |
"extra_special_tokens": {},
|
| 49 |
-
"mask_token": "
|
| 50 |
"max_length": 128,
|
| 51 |
-
"model_max_length":
|
| 52 |
-
"never_split": null,
|
| 53 |
"pad_to_multiple_of": null,
|
| 54 |
-
"pad_token": "
|
| 55 |
"pad_token_type_id": 0,
|
| 56 |
"padding_side": "right",
|
| 57 |
-
"sep_token": "
|
| 58 |
"stride": 0,
|
| 59 |
"strip_accents": null,
|
| 60 |
"tokenize_chinese_chars": true,
|
| 61 |
-
"tokenizer_class": "
|
| 62 |
"truncation_side": "right",
|
| 63 |
"truncation_strategy": "longest_first",
|
| 64 |
"unk_token": "[UNK]"
|
|
|
|
| 1 |
{
|
| 2 |
"added_tokens_decoder": {
|
| 3 |
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
"lstrip": false,
|
| 6 |
"normalized": false,
|
| 7 |
"rstrip": false,
|
| 8 |
"single_word": false,
|
| 9 |
"special": true
|
| 10 |
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
"lstrip": false,
|
| 14 |
"normalized": false,
|
| 15 |
"rstrip": false,
|
| 16 |
"single_word": false,
|
| 17 |
"special": true
|
| 18 |
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
"lstrip": false,
|
| 22 |
"normalized": false,
|
| 23 |
"rstrip": false,
|
| 24 |
"single_word": false,
|
| 25 |
"special": true
|
| 26 |
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
"rstrip": false,
|
| 32 |
"single_word": false,
|
| 33 |
"special": true
|
| 34 |
},
|
| 35 |
+
"104": {
|
| 36 |
+
"content": "[UNK]",
|
| 37 |
"lstrip": false,
|
| 38 |
"normalized": false,
|
| 39 |
"rstrip": false,
|
| 40 |
"single_word": false,
|
| 41 |
"special": true
|
| 42 |
+
},
|
| 43 |
+
"30526": {
|
| 44 |
+
"content": "<mask>",
|
| 45 |
+
"lstrip": true,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
}
|
| 51 |
},
|
| 52 |
+
"bos_token": "<s>",
|
| 53 |
"clean_up_tokenization_spaces": false,
|
| 54 |
+
"cls_token": "<s>",
|
|
|
|
| 55 |
"do_lower_case": true,
|
| 56 |
+
"eos_token": "</s>",
|
| 57 |
"extra_special_tokens": {},
|
| 58 |
+
"mask_token": "<mask>",
|
| 59 |
"max_length": 128,
|
| 60 |
+
"model_max_length": 384,
|
|
|
|
| 61 |
"pad_to_multiple_of": null,
|
| 62 |
+
"pad_token": "<pad>",
|
| 63 |
"pad_token_type_id": 0,
|
| 64 |
"padding_side": "right",
|
| 65 |
+
"sep_token": "</s>",
|
| 66 |
"stride": 0,
|
| 67 |
"strip_accents": null,
|
| 68 |
"tokenize_chinese_chars": true,
|
| 69 |
+
"tokenizer_class": "MPNetTokenizer",
|
| 70 |
"truncation_side": "right",
|
| 71 |
"truncation_strategy": "longest_first",
|
| 72 |
"unk_token": "[UNK]"
|
vocab.txt
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
[PAD]
|
| 2 |
[unused0]
|
| 3 |
[unused1]
|
|
@@ -30520,3 +30524,4 @@ necessitated
|
|
| 30520 |
##:
|
| 30521 |
##?
|
| 30522 |
##~
|
|
|
|
|
|
| 1 |
+
<s>
|
| 2 |
+
<pad>
|
| 3 |
+
</s>
|
| 4 |
+
<unk>
|
| 5 |
[PAD]
|
| 6 |
[unused0]
|
| 7 |
[unused1]
|
|
|
|
| 30524 |
##:
|
| 30525 |
##?
|
| 30526 |
##~
|
| 30527 |
+
<mask>
|