duzx16
commited on
Commit
·
01717dd
1
Parent(s):
507dfe3
Update tokenizer
Browse files- tokenization_glm.py +270 -55
tokenization_glm.py
CHANGED
|
@@ -1,66 +1,41 @@
|
|
| 1 |
import os
|
| 2 |
-
from typing import Optional, Tuple, List
|
| 3 |
from shutil import copyfile
|
| 4 |
-
|
| 5 |
import torch
|
| 6 |
-
|
|
|
|
| 7 |
from transformers.utils import logging
|
| 8 |
from transformers.tokenization_utils_base import BatchEncoding
|
|
|
|
|
|
|
| 9 |
import sentencepiece as spm
|
| 10 |
|
| 11 |
logger = logging.get_logger(__name__)
|
| 12 |
-
VOCAB_FILES_NAMES = {"vocab_file": "cog-pretrain.model"}
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
class GLMChineseTokenizer(PreTrainedTokenizer):
|
| 16 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
| 17 |
-
|
| 18 |
-
def __init__(self, vocab_file, **kwargs):
|
| 19 |
-
super().__init__(**kwargs)
|
| 20 |
-
|
| 21 |
-
self.sp_model = spm.SentencePieceProcessor()
|
| 22 |
-
self.sp_model.Load(vocab_file)
|
| 23 |
|
| 24 |
-
@property
|
| 25 |
-
def vocab_size(self):
|
| 26 |
-
return len(self.sp_model)
|
| 27 |
-
|
| 28 |
-
def get_vocab(self):
|
| 29 |
-
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 30 |
-
vocab.update(self.added_tokens_encoder)
|
| 31 |
-
return vocab
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"""Converts a token (str) in an id using the vocab."""
|
| 38 |
-
return self.sp_model.PieceToId(token)
|
| 39 |
-
|
| 40 |
-
def _convert_id_to_token(self, index):
|
| 41 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 42 |
-
return self.sp_model.IdToPiece(index)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
return
|
| 51 |
-
out_vocab_file = os.path.join(
|
| 52 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 53 |
-
)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
return (out_vocab_file,)
|
| 63 |
|
|
|
|
| 64 |
@property
|
| 65 |
def sop_token(self) -> Optional[str]:
|
| 66 |
return "<|startofpiece|>"
|
|
@@ -68,7 +43,7 @@ class GLMChineseTokenizer(PreTrainedTokenizer):
|
|
| 68 |
@property
|
| 69 |
def sop_token_id(self) -> Optional[int]:
|
| 70 |
"""
|
| 71 |
-
`Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling.
|
| 72 |
"""
|
| 73 |
return self.convert_tokens_to_ids(self.sop_token)
|
| 74 |
|
|
@@ -79,7 +54,7 @@ class GLMChineseTokenizer(PreTrainedTokenizer):
|
|
| 79 |
@property
|
| 80 |
def eop_token_id(self) -> Optional[int]:
|
| 81 |
"""
|
| 82 |
-
`Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling.
|
| 83 |
"""
|
| 84 |
return self.convert_tokens_to_ids(self.eop_token)
|
| 85 |
|
|
@@ -91,12 +66,113 @@ class GLMChineseTokenizer(PreTrainedTokenizer):
|
|
| 91 |
def smask_token_id(self) -> int:
|
| 92 |
return self.convert_tokens_to_ids("[sMASK]")
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
input_ids = model_input.input_ids
|
| 97 |
batch_size, seq_length = input_ids.shape[:2]
|
| 98 |
position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)]
|
| 99 |
position_ids, block_position_ids = [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
for i in range(batch_size):
|
| 101 |
mask_positions = []
|
| 102 |
for mask_id in mask_ids:
|
|
@@ -117,11 +193,86 @@ class GLMChineseTokenizer(PreTrainedTokenizer):
|
|
| 117 |
dim=0).unsqueeze(0).expand(batch_size, -1, -1)
|
| 118 |
attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2)
|
| 119 |
attention_mask = attention_mask.unsqueeze(1)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
def build_inputs_with_special_tokens(
|
| 126 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 127 |
) -> List[int]:
|
|
@@ -145,3 +296,67 @@ class GLMChineseTokenizer(PreTrainedTokenizer):
|
|
| 145 |
cls = [self.cls_token_id]
|
| 146 |
eos = [self.eos_token_id]
|
| 147 |
return cls + token_ids_0 + eos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from typing import Optional, Tuple, List, Union
|
| 3 |
from shutil import copyfile
|
|
|
|
| 4 |
import torch
|
| 5 |
+
|
| 6 |
+
from transformers import PreTrainedTokenizer, RobertaTokenizer, GPT2Tokenizer, BertTokenizer
|
| 7 |
from transformers.utils import logging
|
| 8 |
from transformers.tokenization_utils_base import BatchEncoding
|
| 9 |
+
from transformers.models.auto.tokenization_auto import get_tokenizer_config
|
| 10 |
+
from transformers.utils.generic import _is_torch_device
|
| 11 |
import sentencepiece as spm
|
| 12 |
|
| 13 |
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
class GLMBatchEncoding(BatchEncoding):
|
| 17 |
+
def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
|
| 18 |
+
"""
|
| 19 |
+
Send all values to device by calling `v.to(device)` (PyTorch only).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
Args:
|
| 22 |
+
device (`str` or `torch.device`): The device to put the tensors on.
|
| 23 |
|
| 24 |
+
Returns:
|
| 25 |
+
[`BatchEncoding`]: The same instance after modification.
|
| 26 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# This check catches things like APEX blindly calling "to" on all inputs to a module
|
| 29 |
+
# Otherwise it passes the casts down and casts the LongTensor containing the token idxs
|
| 30 |
+
# into a HalfTensor
|
| 31 |
+
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
|
| 32 |
+
self.data = {k: v.to(device=device) if torch.is_tensor(v) else v for k, v in self.data.items()}
|
| 33 |
+
else:
|
| 34 |
+
logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.")
|
| 35 |
+
return self
|
| 36 |
|
|
|
|
| 37 |
|
| 38 |
+
class GLMTokenizerMixin:
|
| 39 |
@property
|
| 40 |
def sop_token(self) -> Optional[str]:
|
| 41 |
return "<|startofpiece|>"
|
|
|
|
| 43 |
@property
|
| 44 |
def sop_token_id(self) -> Optional[int]:
|
| 45 |
"""
|
| 46 |
+
`Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling.
|
| 47 |
"""
|
| 48 |
return self.convert_tokens_to_ids(self.sop_token)
|
| 49 |
|
|
|
|
| 54 |
@property
|
| 55 |
def eop_token_id(self) -> Optional[int]:
|
| 56 |
"""
|
| 57 |
+
`Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling.
|
| 58 |
"""
|
| 59 |
return self.convert_tokens_to_ids(self.eop_token)
|
| 60 |
|
|
|
|
| 66 |
def smask_token_id(self) -> int:
|
| 67 |
return self.convert_tokens_to_ids("[sMASK]")
|
| 68 |
|
| 69 |
+
@property
|
| 70 |
+
def mask_token_ids(self):
|
| 71 |
+
return [self.mask_token_id, self.smask_token_id, self.gmask_token_id]
|
| 72 |
+
|
| 73 |
+
def _build_input_for_multiple_choice(self, context, choices):
|
| 74 |
+
context_id = context["input_ids"]
|
| 75 |
+
if torch.is_tensor(context_id):
|
| 76 |
+
context_id = context_id.tolist()
|
| 77 |
+
|
| 78 |
+
division = len(context_id)
|
| 79 |
+
mask_position = context_id.index(self.mask_token_id)
|
| 80 |
+
|
| 81 |
+
token = torch.tensor(context_id, dtype=torch.long)
|
| 82 |
+
attention_mask = [context["attention_mask"].expand(division, -1)]
|
| 83 |
+
position_id = torch.arange(division, dtype=torch.long)
|
| 84 |
+
block_position_id = torch.zeros(division, dtype=torch.long)
|
| 85 |
+
|
| 86 |
+
choice_ids, choice_indices = [], []
|
| 87 |
+
|
| 88 |
+
for choice_str in choices:
|
| 89 |
+
choice = torch.tensor(self(choice_str, add_special_tokens=False, padding=False)['input_ids'],
|
| 90 |
+
dtype=torch.long)
|
| 91 |
+
choice_ids.append(choice)
|
| 92 |
+
choice_indices.append(torch.arange(len(token), len(token) + len(choice), dtype=torch.long))
|
| 93 |
+
attention_mask.append(torch.tril(torch.ones((len(choice), len(choice)), dtype=torch.long)))
|
| 94 |
+
|
| 95 |
+
token = torch.cat((token, torch.tensor([self.sop_token_id], dtype=torch.long), choice[:-1]))
|
| 96 |
+
position_id = torch.cat((position_id, torch.tensor([mask_position] * len(choice), dtype=torch.long)))
|
| 97 |
+
block_position_id = torch.cat((block_position_id, torch.arange(1, 1 + len(choice), dtype=torch.long)))
|
| 98 |
+
|
| 99 |
+
attention_mask = torch.block_diag(*attention_mask)
|
| 100 |
+
attention_mask[division:, :division] = context["attention_mask"].unsqueeze(0)
|
| 101 |
+
|
| 102 |
+
return {
|
| 103 |
+
"input_ids": token,
|
| 104 |
+
"position_ids": torch.stack((position_id, block_position_id)),
|
| 105 |
+
"attention_mask": attention_mask,
|
| 106 |
+
"choice_ids": choice_ids,
|
| 107 |
+
"choice_indices": choice_indices
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
def _pad_batch(self, tokens, position_ids, attention_mask, max_seq_length):
|
| 111 |
+
pad_length = max_seq_length - len(tokens)
|
| 112 |
+
attention_mask = torch.nn.functional.pad(
|
| 113 |
+
attention_mask,
|
| 114 |
+
(0, pad_length, 0, pad_length),
|
| 115 |
+
mode="constant",
|
| 116 |
+
value=0,
|
| 117 |
+
)
|
| 118 |
+
tokens = torch.cat((tokens, torch.zeros(pad_length, dtype=torch.long)))
|
| 119 |
+
position_ids = torch.cat((position_ids, position_ids[..., -1:].expand(-1, pad_length)), dim=-1)
|
| 120 |
+
return tokens, position_ids, attention_mask
|
| 121 |
+
|
| 122 |
+
def _collate(self, samples):
|
| 123 |
+
TILE = 1
|
| 124 |
+
length_to_pad = (max(map(lambda spl: len(spl["input_ids"]), samples)) + TILE - 1) // TILE * TILE
|
| 125 |
+
|
| 126 |
+
token_batch, position_id_batch, attention_mask_batch = [], [], []
|
| 127 |
+
choices_batch, choice_target_ids_batch = [], []
|
| 128 |
+
|
| 129 |
+
for sample in samples:
|
| 130 |
+
token, position_id, attention_mask = self._pad_batch(
|
| 131 |
+
sample["input_ids"], sample["position_ids"], sample["attention_mask"], length_to_pad
|
| 132 |
+
)
|
| 133 |
+
token_batch.append(token)
|
| 134 |
+
position_id_batch.append(position_id)
|
| 135 |
+
attention_mask_batch.append(attention_mask)
|
| 136 |
+
choices_batch.append(sample["choice_ids"])
|
| 137 |
+
choice_target_ids_batch.append(sample["choice_indices"])
|
| 138 |
+
return {
|
| 139 |
+
"input_ids": torch.stack(token_batch),
|
| 140 |
+
"position_ids": torch.stack(position_id_batch),
|
| 141 |
+
"attention_mask": torch.stack(attention_mask_batch).unsqueeze(1),
|
| 142 |
+
"choice_ids": choices_batch,
|
| 143 |
+
"choice_indices": choice_target_ids_batch,
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
def build_inputs_for_multiple_choice(self, model_input: BatchEncoding, choices, max_length=None):
|
| 147 |
+
samples = [{key: value[i] for key, value in model_input.items()} for i in range(len(model_input["input_ids"]))]
|
| 148 |
+
samples = [self._build_input_for_multiple_choice(sample, choice) for sample, choice in
|
| 149 |
+
zip(samples, choices)]
|
| 150 |
+
inputs = self._collate(samples)
|
| 151 |
+
return GLMBatchEncoding(inputs)
|
| 152 |
+
|
| 153 |
+
def build_inputs_for_generation(self, model_input: BatchEncoding, max_gen_length=512, targets=None, padding=False):
|
| 154 |
+
mask_ids = self.mask_token_ids
|
| 155 |
input_ids = model_input.input_ids
|
| 156 |
batch_size, seq_length = input_ids.shape[:2]
|
| 157 |
position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)]
|
| 158 |
position_ids, block_position_ids = [], []
|
| 159 |
+
labels = None
|
| 160 |
+
if targets is not None:
|
| 161 |
+
is_batched = isinstance(targets, (list, tuple))
|
| 162 |
+
targets = self(targets, add_special_tokens=False, padding=False).input_ids
|
| 163 |
+
if not is_batched:
|
| 164 |
+
targets = [targets]
|
| 165 |
+
assert len(targets) == len(input_ids)
|
| 166 |
+
targets = [(target + [self.eop_token_id])[:max_gen_length] for target in targets]
|
| 167 |
+
if not padding:
|
| 168 |
+
max_gen_length = max(map(len, targets))
|
| 169 |
+
targets = [[self.sop_token_id] + target for target in targets]
|
| 170 |
+
labels = [target[1:] for target in targets]
|
| 171 |
+
targets = [target + [self.pad_token_id] * (max_gen_length + 1 - len(target)) for target in targets]
|
| 172 |
+
labels = [label + [-100] * (max_gen_length - len(label)) for label in labels]
|
| 173 |
+
targets = torch.tensor(targets, dtype=input_ids.dtype, device=input_ids.device)
|
| 174 |
+
labels = torch.tensor(labels, dtype=input_ids.dtype, device=input_ids.device)
|
| 175 |
+
labels = torch.cat((input_ids.new_full((batch_size, seq_length), -100), labels), dim=1)
|
| 176 |
for i in range(batch_size):
|
| 177 |
mask_positions = []
|
| 178 |
for mask_id in mask_ids:
|
|
|
|
| 193 |
dim=0).unsqueeze(0).expand(batch_size, -1, -1)
|
| 194 |
attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2)
|
| 195 |
attention_mask = attention_mask.unsqueeze(1)
|
| 196 |
+
if targets is None:
|
| 197 |
+
input_ids = torch.cat((input_ids, input_ids.new_full((batch_size, 1), self.sop_token_id)), dim=-1)
|
| 198 |
+
else:
|
| 199 |
+
input_ids = torch.cat((input_ids, targets[:, :-1]), dim=1)
|
| 200 |
+
batch = {"input_ids": input_ids, "position_ids": position_ids}
|
| 201 |
+
if labels is None:
|
| 202 |
+
batch["generation_attention_mask"] = attention_mask
|
| 203 |
+
else:
|
| 204 |
+
batch["attention_mask"] = attention_mask
|
| 205 |
+
batch["labels"] = labels
|
| 206 |
+
return BatchEncoding(batch)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class GLMRobertaTokenizer(RobertaTokenizer, GLMTokenizerMixin):
|
| 210 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
| 211 |
+
truncation_side: str = "left"
|
| 212 |
+
|
| 213 |
+
@property
|
| 214 |
+
def gmask_token_id(self) -> int:
|
| 215 |
+
raise NotImplementedError("The model doesn't support gMASK")
|
| 216 |
+
|
| 217 |
+
@property
|
| 218 |
+
def smask_token_id(self) -> int:
|
| 219 |
+
raise NotImplementedError("The model doesn't support sMASK")
|
| 220 |
+
|
| 221 |
+
@property
|
| 222 |
+
def mask_token_ids(self):
|
| 223 |
+
return [self.mask_token_id]
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
class GLMChineseTokenizer(PreTrainedTokenizer, GLMTokenizerMixin):
|
| 227 |
+
vocab_files_names = {"vocab_file": "cog-pretrain.model"}
|
| 228 |
+
truncation_side: str = "left"
|
| 229 |
+
|
| 230 |
+
def __init__(self, vocab_file, **kwargs):
|
| 231 |
+
super().__init__(**kwargs)
|
| 232 |
+
self.vocab_file = vocab_file
|
| 233 |
+
self.sp_model = spm.SentencePieceProcessor()
|
| 234 |
+
self.sp_model.Load(vocab_file)
|
| 235 |
+
|
| 236 |
+
@property
|
| 237 |
+
def vocab_size(self):
|
| 238 |
+
return len(self.sp_model)
|
| 239 |
+
|
| 240 |
+
def get_vocab(self):
|
| 241 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 242 |
+
vocab.update(self.added_tokens_encoder)
|
| 243 |
+
return vocab
|
| 244 |
+
|
| 245 |
+
def _tokenize(self, text, **kwargs):
|
| 246 |
+
return self.sp_model.encode(text, out_type=str)
|
| 247 |
+
|
| 248 |
+
def _convert_token_to_id(self, token):
|
| 249 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 250 |
+
return self.sp_model.PieceToId(token)
|
| 251 |
+
|
| 252 |
+
def _convert_id_to_token(self, index):
|
| 253 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 254 |
+
return self.sp_model.IdToPiece(index)
|
| 255 |
+
|
| 256 |
+
def convert_tokens_to_string(self, tokens):
|
| 257 |
+
return self.sp_model.decode(tokens)
|
| 258 |
+
|
| 259 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 260 |
+
if not os.path.isdir(save_directory):
|
| 261 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 262 |
+
return
|
| 263 |
+
out_vocab_file = os.path.join(
|
| 264 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
|
| 265 |
)
|
| 266 |
|
| 267 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 268 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 269 |
+
elif not os.path.isfile(self.vocab_file):
|
| 270 |
+
with open(out_vocab_file, "wb") as fi:
|
| 271 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 272 |
+
fi.write(content_spiece_model)
|
| 273 |
+
|
| 274 |
+
return (out_vocab_file,)
|
| 275 |
+
|
| 276 |
def build_inputs_with_special_tokens(
|
| 277 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 278 |
) -> List[int]:
|
|
|
|
| 296 |
cls = [self.cls_token_id]
|
| 297 |
eos = [self.eos_token_id]
|
| 298 |
return cls + token_ids_0 + eos
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
class GLMGPT2Tokenizer(GPT2Tokenizer, GLMTokenizerMixin):
|
| 302 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
| 303 |
+
truncation_side: str = "left"
|
| 304 |
+
|
| 305 |
+
def build_inputs_with_special_tokens(
|
| 306 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 307 |
+
) -> List[int]:
|
| 308 |
+
"""
|
| 309 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
| 310 |
+
adding special tokens. A BERT sequence has the following format:
|
| 311 |
+
|
| 312 |
+
- single sequence: ``[CLS] X [SEP]``
|
| 313 |
+
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
| 314 |
+
|
| 315 |
+
Args:
|
| 316 |
+
token_ids_0 (:obj:`List[int]`):
|
| 317 |
+
List of IDs to which the special tokens will be added.
|
| 318 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
| 319 |
+
Optional second list of IDs for sequence pairs.
|
| 320 |
+
|
| 321 |
+
Returns:
|
| 322 |
+
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
| 323 |
+
"""
|
| 324 |
+
assert token_ids_1 is None
|
| 325 |
+
cls = [self.cls_token_id]
|
| 326 |
+
eos = [self.eos_token_id]
|
| 327 |
+
return cls + token_ids_0 + eos
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class GLMBertTokenizer(BertTokenizer, GLMTokenizerMixin):
|
| 331 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask"]
|
| 332 |
+
truncation_side: str = "left"
|
| 333 |
+
|
| 334 |
+
@property
|
| 335 |
+
def gmask_token_id(self) -> int:
|
| 336 |
+
raise NotImplementedError("The model doesn't support gMASK")
|
| 337 |
+
|
| 338 |
+
@property
|
| 339 |
+
def smask_token_id(self) -> int:
|
| 340 |
+
raise NotImplementedError("The model doesn't support sMASK")
|
| 341 |
+
|
| 342 |
+
@property
|
| 343 |
+
def mask_token_ids(self):
|
| 344 |
+
return [self.mask_token_id]
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
class GLMTokenizer:
|
| 348 |
+
@classmethod
|
| 349 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
| 350 |
+
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
|
| 351 |
+
config_tokenizer_class = tokenizer_config.get("tokenizer_class")
|
| 352 |
+
if config_tokenizer_class == "GLMRobertaTokenizer":
|
| 353 |
+
tokenizer_class = GLMRobertaTokenizer
|
| 354 |
+
elif config_tokenizer_class == "GLMChineseTokenizer":
|
| 355 |
+
tokenizer_class = GLMChineseTokenizer
|
| 356 |
+
elif config_tokenizer_class == "GLMGPT2Tokenizer":
|
| 357 |
+
tokenizer_class = GLMGPT2Tokenizer
|
| 358 |
+
elif config_tokenizer_class == "GLMBertTokenizer":
|
| 359 |
+
tokenizer_class = GLMBertTokenizer
|
| 360 |
+
else:
|
| 361 |
+
raise NotImplementedError("Not implemented tokenizer type:", config_tokenizer_class)
|
| 362 |
+
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
|