ybkim95 commited on
Commit
e6e1ed2
·
verified ·
1 Parent(s): 1363219

Upload folder using huggingface_hub

Browse files
global_step700/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eeec11714b0fee5900be6302e5949a82d2928c45a552c3d1d6993694e059567
3
+ size 25613049823
global_step700/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0e89aa7ae75adffe0676555363831ce6ecd7570b59b0963f6477098cb44900a
3
+ size 25613049823
global_step700/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48ed2174a7b35d02653977a43bc7125ddf9e97e2ee706b365652ad3f12821a9
3
+ size 25613049823
global_step700/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57df57eb9481893414a1e7e268894871130612875c5c128bf129ec2c1d6a0437
3
+ size 25613049823
global_step700/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:991a6e32a3f05fd89870c84801e3c5e92452e33006fcd446aef3690ce5e180e0
3
+ size 131199
global_step700/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12b7c28a806d3ad014a060e21b2ee3c0bc2c98a0c333792f951585906dd3da32
3
+ size 131135
global_step700/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:503c0eac64e9948c7a474f4c35247f3a112a6f8daa5f3dcd84caa7729432d04f
3
+ size 131135
global_step700/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb23420badf7250a50ee10795d14f55bb1a1cf2f1fe0c4b83bbfea9b065a690a
3
+ size 131135
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step700
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:659b1cdee2219458dd84ce6a632a595465680b8080e5c44bd600ff97eca8d752
3
+ size 15429
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86accf27064cdd503053e90476a6bd10de333d4ff0594535ad55ea13a473c91d
3
+ size 15429
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18ca8d714ef40be035404c1957b5a4dee84e1f43980408393f8aa710552ee6f6
3
+ size 15429
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cfdebe99e40accc9c9d8f09c63136a14abda997d9b501969ec8e16e9d183179
3
+ size 15429
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5b0a08026753faf278ef077908a9ba17630202b616bbd23f16e30e79245d6a
3
+ size 1465
trainer_state.json ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 700,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.014295925661186561,
14
+ "grad_norm": 16.642337799072266,
15
+ "learning_rate": 1.9742857142857144e-05,
16
+ "loss": 4.2448,
17
+ "mean_token_accuracy": 0.44755197104532274,
18
+ "num_tokens": 63714.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.028591851322373123,
23
+ "grad_norm": 12.869135856628418,
24
+ "learning_rate": 1.945714285714286e-05,
25
+ "loss": 1.9287,
26
+ "mean_token_accuracy": 0.5766903940588236,
27
+ "num_tokens": 128528.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.04288777698355969,
32
+ "grad_norm": 18.376684188842773,
33
+ "learning_rate": 1.9171428571428573e-05,
34
+ "loss": 1.6956,
35
+ "mean_token_accuracy": 0.597195016592741,
36
+ "num_tokens": 191200.0,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.057183702644746245,
41
+ "grad_norm": 17.71656036376953,
42
+ "learning_rate": 1.888571428571429e-05,
43
+ "loss": 1.6076,
44
+ "mean_token_accuracy": 0.6067132025957107,
45
+ "num_tokens": 255728.0,
46
+ "step": 40
47
+ },
48
+ {
49
+ "epoch": 0.07147962830593281,
50
+ "grad_norm": 21.026283264160156,
51
+ "learning_rate": 1.86e-05,
52
+ "loss": 1.5728,
53
+ "mean_token_accuracy": 0.612850959226489,
54
+ "num_tokens": 319058.0,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.08577555396711938,
59
+ "grad_norm": 46.10198974609375,
60
+ "learning_rate": 1.8314285714285714e-05,
61
+ "loss": 1.5977,
62
+ "mean_token_accuracy": 0.6111391615122557,
63
+ "num_tokens": 384900.0,
64
+ "step": 60
65
+ },
66
+ {
67
+ "epoch": 0.10007147962830593,
68
+ "grad_norm": 14.742942810058594,
69
+ "learning_rate": 1.802857142857143e-05,
70
+ "loss": 1.5649,
71
+ "mean_token_accuracy": 0.6097237385809422,
72
+ "num_tokens": 450346.0,
73
+ "step": 70
74
+ },
75
+ {
76
+ "epoch": 0.11436740528949249,
77
+ "grad_norm": 43.62748718261719,
78
+ "learning_rate": 1.7742857142857143e-05,
79
+ "loss": 1.5184,
80
+ "mean_token_accuracy": 0.6210372049361468,
81
+ "num_tokens": 515018.0,
82
+ "step": 80
83
+ },
84
+ {
85
+ "epoch": 0.12866333095067906,
86
+ "grad_norm": 15.469511032104492,
87
+ "learning_rate": 1.745714285714286e-05,
88
+ "loss": 1.4736,
89
+ "mean_token_accuracy": 0.6270900748670101,
90
+ "num_tokens": 576955.0,
91
+ "step": 90
92
+ },
93
+ {
94
+ "epoch": 0.14295925661186562,
95
+ "grad_norm": 19.448793411254883,
96
+ "learning_rate": 1.717142857142857e-05,
97
+ "loss": 1.4637,
98
+ "mean_token_accuracy": 0.6368957210332156,
99
+ "num_tokens": 641295.0,
100
+ "step": 100
101
+ },
102
+ {
103
+ "epoch": 0.15725518227305219,
104
+ "grad_norm": 37.31778335571289,
105
+ "learning_rate": 1.6885714285714288e-05,
106
+ "loss": 1.5303,
107
+ "mean_token_accuracy": 0.6210926879197359,
108
+ "num_tokens": 706683.0,
109
+ "step": 110
110
+ },
111
+ {
112
+ "epoch": 0.17155110793423875,
113
+ "grad_norm": 9.722342491149902,
114
+ "learning_rate": 1.66e-05,
115
+ "loss": 1.4596,
116
+ "mean_token_accuracy": 0.6298462159931659,
117
+ "num_tokens": 771285.0,
118
+ "step": 120
119
+ },
120
+ {
121
+ "epoch": 0.18584703359542531,
122
+ "grad_norm": 9.656769752502441,
123
+ "learning_rate": 1.6314285714285716e-05,
124
+ "loss": 1.5281,
125
+ "mean_token_accuracy": 0.6251190695911646,
126
+ "num_tokens": 840678.0,
127
+ "step": 130
128
+ },
129
+ {
130
+ "epoch": 0.20014295925661185,
131
+ "grad_norm": 9.608354568481445,
132
+ "learning_rate": 1.602857142857143e-05,
133
+ "loss": 1.4438,
134
+ "mean_token_accuracy": 0.6370445918291807,
135
+ "num_tokens": 905832.0,
136
+ "step": 140
137
+ },
138
+ {
139
+ "epoch": 0.21443888491779842,
140
+ "grad_norm": 9.842904090881348,
141
+ "learning_rate": 1.5742857142857145e-05,
142
+ "loss": 1.5379,
143
+ "mean_token_accuracy": 0.6172758720815181,
144
+ "num_tokens": 972946.0,
145
+ "step": 150
146
+ },
147
+ {
148
+ "epoch": 0.22873481057898498,
149
+ "grad_norm": 18.17994499206543,
150
+ "learning_rate": 1.545714285714286e-05,
151
+ "loss": 1.4322,
152
+ "mean_token_accuracy": 0.6351331725716591,
153
+ "num_tokens": 1034427.0,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.24303073624017155,
158
+ "grad_norm": 8.876994132995605,
159
+ "learning_rate": 1.5171428571428572e-05,
160
+ "loss": 1.4343,
161
+ "mean_token_accuracy": 0.6313620086759328,
162
+ "num_tokens": 1101359.0,
163
+ "step": 170
164
+ },
165
+ {
166
+ "epoch": 0.2573266619013581,
167
+ "grad_norm": 10.895979881286621,
168
+ "learning_rate": 1.4885714285714288e-05,
169
+ "loss": 1.4537,
170
+ "mean_token_accuracy": 0.633945481479168,
171
+ "num_tokens": 1166538.0,
172
+ "step": 180
173
+ },
174
+ {
175
+ "epoch": 0.27162258756254465,
176
+ "grad_norm": 12.30453872680664,
177
+ "learning_rate": 1.46e-05,
178
+ "loss": 1.5363,
179
+ "mean_token_accuracy": 0.6255367647856473,
180
+ "num_tokens": 1235118.0,
181
+ "step": 190
182
+ },
183
+ {
184
+ "epoch": 0.28591851322373124,
185
+ "grad_norm": 10.28065299987793,
186
+ "learning_rate": 1.4314285714285717e-05,
187
+ "loss": 1.4199,
188
+ "mean_token_accuracy": 0.635765865072608,
189
+ "num_tokens": 1300601.0,
190
+ "step": 200
191
+ },
192
+ {
193
+ "epoch": 0.3002144388849178,
194
+ "grad_norm": 11.893675804138184,
195
+ "learning_rate": 1.402857142857143e-05,
196
+ "loss": 1.3881,
197
+ "mean_token_accuracy": 0.6449477795511485,
198
+ "num_tokens": 1362732.0,
199
+ "step": 210
200
+ },
201
+ {
202
+ "epoch": 0.31451036454610437,
203
+ "grad_norm": 11.485602378845215,
204
+ "learning_rate": 1.3742857142857144e-05,
205
+ "loss": 1.3647,
206
+ "mean_token_accuracy": 0.6486451178789139,
207
+ "num_tokens": 1424780.0,
208
+ "step": 220
209
+ },
210
+ {
211
+ "epoch": 0.3288062902072909,
212
+ "grad_norm": 8.882689476013184,
213
+ "learning_rate": 1.3457142857142858e-05,
214
+ "loss": 1.3915,
215
+ "mean_token_accuracy": 0.6436454936861992,
216
+ "num_tokens": 1490808.0,
217
+ "step": 230
218
+ },
219
+ {
220
+ "epoch": 0.3431022158684775,
221
+ "grad_norm": 18.272981643676758,
222
+ "learning_rate": 1.3171428571428573e-05,
223
+ "loss": 1.4796,
224
+ "mean_token_accuracy": 0.6283955980092287,
225
+ "num_tokens": 1556933.0,
226
+ "step": 240
227
+ },
228
+ {
229
+ "epoch": 0.35739814152966404,
230
+ "grad_norm": 11.947668075561523,
231
+ "learning_rate": 1.2885714285714285e-05,
232
+ "loss": 1.4398,
233
+ "mean_token_accuracy": 0.638329004868865,
234
+ "num_tokens": 1621053.0,
235
+ "step": 250
236
+ },
237
+ {
238
+ "epoch": 0.37169406719085063,
239
+ "grad_norm": 23.547773361206055,
240
+ "learning_rate": 1.2600000000000001e-05,
241
+ "loss": 1.3801,
242
+ "mean_token_accuracy": 0.6448216594755649,
243
+ "num_tokens": 1686747.0,
244
+ "step": 260
245
+ },
246
+ {
247
+ "epoch": 0.38598999285203717,
248
+ "grad_norm": 16.82425880432129,
249
+ "learning_rate": 1.2314285714285716e-05,
250
+ "loss": 1.3891,
251
+ "mean_token_accuracy": 0.6475608512759209,
252
+ "num_tokens": 1751946.0,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.4002859185132237,
257
+ "grad_norm": 11.931357383728027,
258
+ "learning_rate": 1.202857142857143e-05,
259
+ "loss": 1.3768,
260
+ "mean_token_accuracy": 0.6439446356147528,
261
+ "num_tokens": 1816123.0,
262
+ "step": 280
263
+ },
264
+ {
265
+ "epoch": 0.4145818441744103,
266
+ "grad_norm": 14.375319480895996,
267
+ "learning_rate": 1.1742857142857144e-05,
268
+ "loss": 1.315,
269
+ "mean_token_accuracy": 0.6517576463520527,
270
+ "num_tokens": 1879227.0,
271
+ "step": 290
272
+ },
273
+ {
274
+ "epoch": 0.42887776983559683,
275
+ "grad_norm": 10.699817657470703,
276
+ "learning_rate": 1.1457142857142857e-05,
277
+ "loss": 1.3519,
278
+ "mean_token_accuracy": 0.6487406313419342,
279
+ "num_tokens": 1944238.0,
280
+ "step": 300
281
+ },
282
+ {
283
+ "epoch": 0.4431736954967834,
284
+ "grad_norm": 12.067941665649414,
285
+ "learning_rate": 1.1171428571428573e-05,
286
+ "loss": 1.2784,
287
+ "mean_token_accuracy": 0.6627866499125957,
288
+ "num_tokens": 2007629.0,
289
+ "step": 310
290
+ },
291
+ {
292
+ "epoch": 0.45746962115796996,
293
+ "grad_norm": 15.550559997558594,
294
+ "learning_rate": 1.0885714285714286e-05,
295
+ "loss": 1.3495,
296
+ "mean_token_accuracy": 0.6514371998608113,
297
+ "num_tokens": 2076666.0,
298
+ "step": 320
299
+ },
300
+ {
301
+ "epoch": 0.47176554681915656,
302
+ "grad_norm": 30.000173568725586,
303
+ "learning_rate": 1.0600000000000002e-05,
304
+ "loss": 1.3358,
305
+ "mean_token_accuracy": 0.6507035464048385,
306
+ "num_tokens": 2140860.0,
307
+ "step": 330
308
+ },
309
+ {
310
+ "epoch": 0.4860614724803431,
311
+ "grad_norm": 7.962319850921631,
312
+ "learning_rate": 1.0314285714285715e-05,
313
+ "loss": 1.3231,
314
+ "mean_token_accuracy": 0.6570919144898653,
315
+ "num_tokens": 2204773.0,
316
+ "step": 340
317
+ },
318
+ {
319
+ "epoch": 0.5003573981415297,
320
+ "grad_norm": 24.023008346557617,
321
+ "learning_rate": 1.002857142857143e-05,
322
+ "loss": 1.3936,
323
+ "mean_token_accuracy": 0.6455658808350563,
324
+ "num_tokens": 2270923.0,
325
+ "step": 350
326
+ },
327
+ {
328
+ "epoch": 0.5146533238027162,
329
+ "grad_norm": 8.74783706665039,
330
+ "learning_rate": 9.742857142857143e-06,
331
+ "loss": 1.3383,
332
+ "mean_token_accuracy": 0.6552599217742682,
333
+ "num_tokens": 2337009.0,
334
+ "step": 360
335
+ },
336
+ {
337
+ "epoch": 0.5289492494639028,
338
+ "grad_norm": 17.01344108581543,
339
+ "learning_rate": 9.457142857142858e-06,
340
+ "loss": 1.3524,
341
+ "mean_token_accuracy": 0.6488417606800795,
342
+ "num_tokens": 2405973.0,
343
+ "step": 370
344
+ },
345
+ {
346
+ "epoch": 0.5432451751250893,
347
+ "grad_norm": 9.353411674499512,
348
+ "learning_rate": 9.171428571428572e-06,
349
+ "loss": 1.2638,
350
+ "mean_token_accuracy": 0.6636200629174709,
351
+ "num_tokens": 2469824.0,
352
+ "step": 380
353
+ },
354
+ {
355
+ "epoch": 0.557541100786276,
356
+ "grad_norm": 13.265799522399902,
357
+ "learning_rate": 8.885714285714286e-06,
358
+ "loss": 1.2254,
359
+ "mean_token_accuracy": 0.6689145911484957,
360
+ "num_tokens": 2535167.0,
361
+ "step": 390
362
+ },
363
+ {
364
+ "epoch": 0.5718370264474625,
365
+ "grad_norm": 19.46824836730957,
366
+ "learning_rate": 8.6e-06,
367
+ "loss": 1.3844,
368
+ "mean_token_accuracy": 0.6483918268233537,
369
+ "num_tokens": 2607759.0,
370
+ "step": 400
371
+ },
372
+ {
373
+ "epoch": 0.586132952108649,
374
+ "grad_norm": 15.773782730102539,
375
+ "learning_rate": 8.314285714285715e-06,
376
+ "loss": 1.2708,
377
+ "mean_token_accuracy": 0.6655503377318382,
378
+ "num_tokens": 2670580.0,
379
+ "step": 410
380
+ },
381
+ {
382
+ "epoch": 0.6004288777698356,
383
+ "grad_norm": 8.917901039123535,
384
+ "learning_rate": 8.02857142857143e-06,
385
+ "loss": 1.2726,
386
+ "mean_token_accuracy": 0.6589578501880169,
387
+ "num_tokens": 2737272.0,
388
+ "step": 420
389
+ },
390
+ {
391
+ "epoch": 0.6147248034310222,
392
+ "grad_norm": 8.988587379455566,
393
+ "learning_rate": 7.742857142857144e-06,
394
+ "loss": 1.221,
395
+ "mean_token_accuracy": 0.664219357818365,
396
+ "num_tokens": 2803875.0,
397
+ "step": 430
398
+ },
399
+ {
400
+ "epoch": 0.6290207290922087,
401
+ "grad_norm": 12.661059379577637,
402
+ "learning_rate": 7.457142857142857e-06,
403
+ "loss": 1.2658,
404
+ "mean_token_accuracy": 0.662236025184393,
405
+ "num_tokens": 2869457.0,
406
+ "step": 440
407
+ },
408
+ {
409
+ "epoch": 0.6433166547533953,
410
+ "grad_norm": 8.545147895812988,
411
+ "learning_rate": 7.1714285714285725e-06,
412
+ "loss": 1.2778,
413
+ "mean_token_accuracy": 0.6622273363173008,
414
+ "num_tokens": 2931790.0,
415
+ "step": 450
416
+ },
417
+ {
418
+ "epoch": 0.6576125804145818,
419
+ "grad_norm": 20.769514083862305,
420
+ "learning_rate": 6.885714285714287e-06,
421
+ "loss": 1.2951,
422
+ "mean_token_accuracy": 0.6606701787561178,
423
+ "num_tokens": 2997229.0,
424
+ "step": 460
425
+ },
426
+ {
427
+ "epoch": 0.6719085060757684,
428
+ "grad_norm": 12.466110229492188,
429
+ "learning_rate": 6.600000000000001e-06,
430
+ "loss": 1.1754,
431
+ "mean_token_accuracy": 0.6822692640125751,
432
+ "num_tokens": 3063485.0,
433
+ "step": 470
434
+ },
435
+ {
436
+ "epoch": 0.686204431736955,
437
+ "grad_norm": 8.45051383972168,
438
+ "learning_rate": 6.314285714285715e-06,
439
+ "loss": 1.2102,
440
+ "mean_token_accuracy": 0.6759132348001003,
441
+ "num_tokens": 3127984.0,
442
+ "step": 480
443
+ },
444
+ {
445
+ "epoch": 0.7005003573981415,
446
+ "grad_norm": 12.029594421386719,
447
+ "learning_rate": 6.028571428571429e-06,
448
+ "loss": 1.3355,
449
+ "mean_token_accuracy": 0.6649406619369984,
450
+ "num_tokens": 3194219.0,
451
+ "step": 490
452
+ },
453
+ {
454
+ "epoch": 0.7147962830593281,
455
+ "grad_norm": 8.824553489685059,
456
+ "learning_rate": 5.742857142857143e-06,
457
+ "loss": 1.2317,
458
+ "mean_token_accuracy": 0.6705160938203335,
459
+ "num_tokens": 3259068.0,
460
+ "step": 500
461
+ },
462
+ {
463
+ "epoch": 0.7290922087205146,
464
+ "grad_norm": 16.150766372680664,
465
+ "learning_rate": 5.457142857142858e-06,
466
+ "loss": 1.1558,
467
+ "mean_token_accuracy": 0.6850677601993084,
468
+ "num_tokens": 3324070.0,
469
+ "step": 510
470
+ },
471
+ {
472
+ "epoch": 0.7433881343817013,
473
+ "grad_norm": 7.721499919891357,
474
+ "learning_rate": 5.171428571428571e-06,
475
+ "loss": 1.168,
476
+ "mean_token_accuracy": 0.6747931383550168,
477
+ "num_tokens": 3386885.0,
478
+ "step": 520
479
+ },
480
+ {
481
+ "epoch": 0.7576840600428878,
482
+ "grad_norm": 9.311972618103027,
483
+ "learning_rate": 4.885714285714286e-06,
484
+ "loss": 1.1645,
485
+ "mean_token_accuracy": 0.6775478422641754,
486
+ "num_tokens": 3448602.0,
487
+ "step": 530
488
+ },
489
+ {
490
+ "epoch": 0.7719799857040743,
491
+ "grad_norm": 9.636552810668945,
492
+ "learning_rate": 4.600000000000001e-06,
493
+ "loss": 1.2542,
494
+ "mean_token_accuracy": 0.6680241461843253,
495
+ "num_tokens": 3516481.0,
496
+ "step": 540
497
+ },
498
+ {
499
+ "epoch": 0.7862759113652609,
500
+ "grad_norm": 36.31599044799805,
501
+ "learning_rate": 4.314285714285714e-06,
502
+ "loss": 1.1866,
503
+ "mean_token_accuracy": 0.6768352195620537,
504
+ "num_tokens": 3580217.0,
505
+ "step": 550
506
+ },
507
+ {
508
+ "epoch": 0.8005718370264474,
509
+ "grad_norm": 7.471230506896973,
510
+ "learning_rate": 4.028571428571429e-06,
511
+ "loss": 1.1705,
512
+ "mean_token_accuracy": 0.6818295098841191,
513
+ "num_tokens": 3643021.0,
514
+ "step": 560
515
+ },
516
+ {
517
+ "epoch": 0.8148677626876341,
518
+ "grad_norm": 48.099830627441406,
519
+ "learning_rate": 3.742857142857143e-06,
520
+ "loss": 1.1602,
521
+ "mean_token_accuracy": 0.6852999441325665,
522
+ "num_tokens": 3710116.0,
523
+ "step": 570
524
+ },
525
+ {
526
+ "epoch": 0.8291636883488206,
527
+ "grad_norm": 13.096914291381836,
528
+ "learning_rate": 3.4571428571428574e-06,
529
+ "loss": 1.1942,
530
+ "mean_token_accuracy": 0.6752621583640576,
531
+ "num_tokens": 3775926.0,
532
+ "step": 580
533
+ },
534
+ {
535
+ "epoch": 0.8434596140100071,
536
+ "grad_norm": 11.580378532409668,
537
+ "learning_rate": 3.1714285714285714e-06,
538
+ "loss": 1.1277,
539
+ "mean_token_accuracy": 0.6849311918020249,
540
+ "num_tokens": 3840218.0,
541
+ "step": 590
542
+ },
543
+ {
544
+ "epoch": 0.8577555396711937,
545
+ "grad_norm": 9.58252239227295,
546
+ "learning_rate": 2.885714285714286e-06,
547
+ "loss": 1.187,
548
+ "mean_token_accuracy": 0.6740429483354091,
549
+ "num_tokens": 3904300.0,
550
+ "step": 600
551
+ },
552
+ {
553
+ "epoch": 0.8720514653323803,
554
+ "grad_norm": 9.778560638427734,
555
+ "learning_rate": 2.6e-06,
556
+ "loss": 1.2088,
557
+ "mean_token_accuracy": 0.6759266927838326,
558
+ "num_tokens": 3970409.0,
559
+ "step": 610
560
+ },
561
+ {
562
+ "epoch": 0.8863473909935669,
563
+ "grad_norm": 9.931038856506348,
564
+ "learning_rate": 2.3142857142857145e-06,
565
+ "loss": 1.1766,
566
+ "mean_token_accuracy": 0.6766778022050858,
567
+ "num_tokens": 4038742.0,
568
+ "step": 620
569
+ },
570
+ {
571
+ "epoch": 0.9006433166547534,
572
+ "grad_norm": 7.126023769378662,
573
+ "learning_rate": 2.028571428571429e-06,
574
+ "loss": 1.0968,
575
+ "mean_token_accuracy": 0.6913008309900761,
576
+ "num_tokens": 4103374.0,
577
+ "step": 630
578
+ },
579
+ {
580
+ "epoch": 0.9149392423159399,
581
+ "grad_norm": 7.73612642288208,
582
+ "learning_rate": 1.7428571428571432e-06,
583
+ "loss": 1.1254,
584
+ "mean_token_accuracy": 0.6863209947943687,
585
+ "num_tokens": 4170239.0,
586
+ "step": 640
587
+ },
588
+ {
589
+ "epoch": 0.9292351679771265,
590
+ "grad_norm": 6.532904148101807,
591
+ "learning_rate": 1.4571428571428573e-06,
592
+ "loss": 1.1586,
593
+ "mean_token_accuracy": 0.6804635964334012,
594
+ "num_tokens": 4237810.0,
595
+ "step": 650
596
+ },
597
+ {
598
+ "epoch": 0.9435310936383131,
599
+ "grad_norm": 7.370081901550293,
600
+ "learning_rate": 1.1714285714285715e-06,
601
+ "loss": 1.174,
602
+ "mean_token_accuracy": 0.6809860028326511,
603
+ "num_tokens": 4302937.0,
604
+ "step": 660
605
+ },
606
+ {
607
+ "epoch": 0.9578270192994996,
608
+ "grad_norm": 7.471885681152344,
609
+ "learning_rate": 8.857142857142857e-07,
610
+ "loss": 1.1755,
611
+ "mean_token_accuracy": 0.6858656518161297,
612
+ "num_tokens": 4368704.0,
613
+ "step": 670
614
+ },
615
+ {
616
+ "epoch": 0.9721229449606862,
617
+ "grad_norm": 9.739863395690918,
618
+ "learning_rate": 6.000000000000001e-07,
619
+ "loss": 1.1052,
620
+ "mean_token_accuracy": 0.6904201626777648,
621
+ "num_tokens": 4431384.0,
622
+ "step": 680
623
+ },
624
+ {
625
+ "epoch": 0.9864188706218727,
626
+ "grad_norm": 11.182050704956055,
627
+ "learning_rate": 3.1428571428571433e-07,
628
+ "loss": 1.1422,
629
+ "mean_token_accuracy": 0.688240597397089,
630
+ "num_tokens": 4500182.0,
631
+ "step": 690
632
+ },
633
+ {
634
+ "epoch": 1.0,
635
+ "grad_norm": 11.066879272460938,
636
+ "learning_rate": 2.8571428571428575e-08,
637
+ "loss": 1.131,
638
+ "mean_token_accuracy": 0.6868848518321389,
639
+ "num_tokens": 4559091.0,
640
+ "step": 700
641
+ }
642
+ ],
643
+ "logging_steps": 10,
644
+ "max_steps": 700,
645
+ "num_input_tokens_seen": 0,
646
+ "num_train_epochs": 1,
647
+ "save_steps": 500,
648
+ "stateful_callbacks": {
649
+ "TrainerControl": {
650
+ "args": {
651
+ "should_epoch_stop": false,
652
+ "should_evaluate": false,
653
+ "should_log": false,
654
+ "should_save": true,
655
+ "should_training_stop": true
656
+ },
657
+ "attributes": {}
658
+ }
659
+ },
660
+ "total_flos": 4791381278720.0,
661
+ "train_batch_size": 1,
662
+ "trial_name": null,
663
+ "trial_params": null
664
+ }
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)