# modeling_eat.py from transformers import PreTrainedModel from .configuration_eat import EATConfig from .eat_model import EAT class EATModel(PreTrainedModel): config_class = EATConfig def __init__(self, config: EATConfig): super().__init__(config) self.model = EAT(config) def forward(self, *args, **kwargs): return self.model(*args, **kwargs) def extract_features(self, x): return self.model.extract_features(x)