--- language: ast language_name: Asturian language_family: romance_iberian tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-romance_iberian license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.429 - name: best_isotropy type: isotropy value: 0.7932 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-04 --- # Asturian - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Asturian** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.571x | 3.57 | 0.0264% | 863,429 | | **16k** | 3.921x | 3.92 | 0.0290% | 786,292 | | **32k** | 4.205x | 4.21 | 0.0311% | 733,251 | | **64k** | 4.429x 🏆 | 4.43 | 0.0327% | 696,255 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Pol nome de Pedru'l Grande conocemos a dos monarques europeos: Pedru III d'Aragó...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁pol ▁nome ▁de ▁ped ru ' l ▁grande ▁cono ce ... (+21 more)` | 31 | | 16k | `▁pol ▁nome ▁de ▁pedru ' l ▁grande ▁cono ce mos ... (+18 more)` | 28 | | 32k | `▁pol ▁nome ▁de ▁pedru ' l ▁grande ▁conocemos ▁a ▁dos ... (+15 more)` | 25 | | 64k | `▁pol ▁nome ▁de ▁pedru ' l ▁grande ▁conocemos ▁a ▁dos ... (+15 more)` | 25 | **Sample 2:** `Yuki Ohashi (, ) ye un futbolista xaponés. Clubes Referencies Enllaces esternos ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁yu ki ▁oh as hi ▁(, ▁) ▁ye ▁un ▁futbolista ... (+14 more)` | 24 | | 16k | `▁yu ki ▁oh ashi ▁(, ▁) ▁ye ▁un ▁futbolista ▁xaponés ... (+12 more)` | 22 | | 32k | `▁yuki ▁oh ashi ▁(, ▁) ▁ye ▁un ▁futbolista ▁xaponés . ... (+11 more)` | 21 | | 64k | `▁yuki ▁oh ashi ▁(, ▁) ▁ye ▁un ▁futbolista ▁xaponés . ... (+11 more)` | 21 | **Sample 3:** `Fechos Nacencies Muertes Referencies Enllaces esternos V e.C.` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁fechos ▁nacencies ▁muertes ▁referencies ▁enllaces ▁esternos ▁v ▁e . c ... (+1 more)` | 11 | | 16k | `▁fechos ▁nacencies ▁muertes ▁referencies ▁enllaces ▁esternos ▁v ▁e . c ... (+1 more)` | 11 | | 32k | `▁fechos ▁nacencies ▁muertes ▁referencies ▁enllaces ▁esternos ▁v ▁e . c ... (+1 more)` | 11 | | 64k | `▁fechos ▁nacencies ▁muertes ▁referencies ▁enllaces ▁esternos ▁v ▁e . c ... (+1 more)` | 11 | ### Key Findings - **Best Compression:** 64k achieves 4.429x compression - **Lowest UNK Rate:** 8k with 0.0264% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 132,138 | 17.01 | 1,341,882 | 9.8% | 21.7% | | **2-gram** | Subword | 260 🏆 | 8.02 | 19,027 | 69.7% | 99.1% | | **3-gram** | Word | 640,312 | 19.29 | 2,878,367 | 4.2% | 10.7% | | **3-gram** | Subword | 2,218 | 11.12 | 138,526 | 28.0% | 72.3% | | **4-gram** | Word | 1,536,908 | 20.55 | 4,654,291 | 3.3% | 7.6% | | **4-gram** | Subword | 13,337 | 13.70 | 787,142 | 13.9% | 39.3% | | **5-gram** | Word | 1,050,558 | 20.00 | 2,949,427 | 4.8% | 9.6% | | **5-gram** | Subword | 57,630 | 15.81 | 2,701,102 | 7.8% | 23.5% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `de la` | 877,001 | | 2 | `de los` | 325,167 | | 3 | `la so` | 218,605 | | 4 | `a la` | 213,098 | | 5 | `de les` | 205,401 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `referencies enllaces esternos` | 102,198 | | 2 | `de la so` | 48,437 | | 3 | `d estaos xuníos` | 34,372 | | 4 | `enllaces esternos de` | 33,442 | | 5 | `una población de` | 30,281 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `referencies enllaces esternos de` | 32,439 | | 2 | `tien una población de` | 26,725 | | 3 | `una población de y` | 19,595 | | 4 | `y una superficie de` | 19,554 | | 5 | `población de y una` | 19,514 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `tien una población de y` | 19,555 | | 2 | `una población de y una` | 19,513 | | 3 | `de y una superficie de` | 19,492 | | 4 | `población de y una superficie` | 19,490 | | 5 | `y una superficie de km` | 19,254 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _` | 12,223,314 | | 2 | `e _` | 10,169,137 | | 3 | `s _` | 9,980,231 | | 4 | `_ d` | 9,749,761 | | 5 | `e s` | 9,339,123 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d e` | 7,125,386 | | 2 | `d e _` | 5,278,423 | | 3 | `e s _` | 4,734,999 | | 4 | `o s _` | 3,881,527 | | 5 | `l a _` | 3,034,851 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d e _` | 4,909,705 | | 2 | `_ l a _` | 2,443,055 | | 3 | `d e _ l` | 1,642,151 | | 4 | `a _ d e` | 1,399,483 | | 5 | `s _ d e` | 1,367,031 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d e _ l` | 1,593,336 | | 2 | `e _ l a _` | 1,090,094 | | 3 | `_ d e l _` | 1,070,352 | | 4 | `s _ d e _` | 1,000,253 | | 5 | `a _ d e _` | 970,617 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 260 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~23% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 1.0362 | 2.051 | 12.93 | 1,199,957 | 0.0% | | **1** | Subword | 1.1986 | 2.295 | 7.97 | 10,438 | 0.0% | | **2** | Word | 0.4189 | 1.337 | 2.57 | 15,504,920 | 58.1% | | **2** | Subword | 0.6561 | 1.576 | 4.28 | 83,238 | 34.4% | | **3** | Word | 0.1863 | 1.138 | 1.44 | 39,817,744 | 81.4% | | **3** | Subword | 0.6835 | 1.606 | 4.02 | 356,042 | 31.6% | | **4** | Word | 0.0788 🏆 | 1.056 | 1.14 | 57,235,451 | 92.1% | | **4** | Subword | 0.6840 | 1.607 | 3.51 | 1,432,910 | 31.6% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `de teniente xeneral del planeta mientres la realidá quiciabes d ochobre foi escritu por aciu una` 2. `la cual el propósitu un estilu y hornsby consiguieron 31 d alabama intentó nun tour a` 3. `y derechos humanos ta estremada en determinóse que caltener la so home l minsiterio de candela` **Context Size 2:** 1. `de la cocina nos años y escuchar música dende la edá kim young chae sbs jumpmbc nonstop` 2. `de los fundadores de los cinco principales epítetos y títulos descriptivos de los chola fueron movío...` 3. `la so bona contrarreló calteniendo a dellos decretos prohibiendo la llibre asociación como ye l cuan...` **Context Size 3:** 1. `referencies enllaces esternos green breasted mangu english wikipedia consultáu l 2 de marzu de estab...` 2. `de la so política d esclusión nel sieglu xx en que camudó de nome los líderes del movimientu` 3. `enllaces esternos de xapón de la prefeutura de hyogo llocalización con una superficie de km ver tami...` **Context Size 4:** 1. `referencies enllaces esternos de piloña de piloña` 2. `tien una población de y una superficie de km y una población de referencies enllaces esternos de xap...` 3. `una población de y una superficie de km referencies enllaces esternos d aquila` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_eral_r_s_de_prm` 2. `el_untodesopay_c` 3. `armbra_a_wozall_` **Context Size 2:** 1. `a_dada_d'alicu_de` 2. `e_al_crein_ings._` 3. `s_agu_pobres_saos` **Context Size 3:** 1. `_de_s'atroxina_pa_` 2. `de_los_nuevu._fíos` 3. `es_deste_-_frivaes` **Context Size 4:** 1. `_de_mouther_de_fort` 2. `_la_cada_y_márquist` 3. `de_la_sociedá_nacio` ### Key Findings - **Best Predictability:** Context-4 (word) with 92.1% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (1,432,910 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 552,425 | | Total Tokens | 74,325,511 | | Mean Frequency | 134.54 | | Median Frequency | 4 | | Frequency Std Dev | 9254.05 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | de | 4,928,261 | | 2 | la | 2,485,426 | | 3 | y | 2,042,239 | | 4 | d | 1,169,053 | | 5 | a | 1,155,083 | | 6 | del | 1,074,281 | | 7 | en | 1,055,986 | | 8 | que | 1,007,870 | | 9 | los | 957,887 | | 10 | l | 950,908 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | leptafeke | 2 | | 2 | haua | 2 | | 3 | küzdoblani | 2 | | 4 | contrarrellatu | 2 | | 5 | semilleru | 2 | | 6 | bisterca | 2 | | 7 | šafarsko | 2 | | 8 | vyfalu | 2 | | 9 | ribich | 2 | | 10 | lacos | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 0.9990 | | R² (Goodness of Fit) | 0.995611 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 41.7% | | Top 1,000 | 60.8% | | Top 5,000 | 76.8% | | Top 10,000 | 83.1% | ### Key Findings - **Zipf Compliance:** R²=0.9956 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 41.7% of corpus - **Long Tail:** 542,425 words needed for remaining 16.9% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.7932 | 0.3820 | N/A | N/A | | **mono_64d** | 64 | 0.7818 | 0.2979 | N/A | N/A | | **mono_128d** | 128 | 0.7210 | 0.2388 | N/A | N/A | | **aligned_32d** | 32 | 0.7932 🏆 | 0.3922 | 0.3820 | 0.7300 | | **aligned_64d** | 64 | 0.7818 | 0.3048 | 0.5840 | 0.8840 | | **aligned_128d** | 128 | 0.7210 | 0.2380 | 0.7080 | 0.9240 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.7932 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.3090. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 70.8% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.591** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-co` | control, coetzee, conversión | | `-ma` | manifiéstase, marinel, matraqueo | | `-re` | rehnskiöld, rendimientos, reichholf | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-s` | narganes, supracaudales, señálennos | | `-a` | carga, balsámica, trueba | | `-es` | narganes, supracaudales, rastres | | `-os` | señálennos, sabéivos, visos | | `-se` | escapóse, ñublense, manifiéstase | | `-as` | tankas, aleutas, ḥechas | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `iend` | 1.75x | 206 contexts | fiend, iendo, rienda | | `ació` | 1.96x | 92 contexts | ñació, lació, xació | | `ogra` | 1.57x | 189 contexts | logra, bogra, sogra | | `ient` | 1.46x | 273 contexts | iente, cient, aient | | `acio` | 1.55x | 167 contexts | bacio, facio, macio | | `renc` | 1.71x | 99 contexts | frenc, lorenc, trench | | `ntes` | 1.56x | 144 contexts | antes, entes, entesa | | `enci` | 1.35x | 261 contexts | encia, cenci, venci | | `efer` | 1.63x | 86 contexts | refer, defer, sefer | | `ntos` | 1.72x | 67 contexts | antos, entos, tantos | | `raci` | 1.41x | 164 contexts | racib, racio, iraci | | `ontr` | 1.50x | 117 contexts | contr, kontra, lontra | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-co` | `-s` | 55 words | consentimientos, correllaciones | | `-ma` | `-a` | 44 words | maniobraba, marra | | `-ma` | `-s` | 40 words | macromicetes, maorís | | `-re` | `-a` | 39 words | reflorestada, respondida | | `-co` | `-a` | 37 words | comitia, cornigera | | `-re` | `-s` | 33 words | refundiándoles, reprogramables | | `-re` | `-se` | 27 words | reproducense, retomándose | | `-co` | `-es` | 23 words | correllaciones, coeditores | | `-co` | `-se` | 22 words | confiándose, comercializábense | | `-re` | `-es` | 20 words | refundiándoles, reprogramables | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | clamorosos | **`clamor-os-os`** | 6.0 | `clamor` | | doloroses | **`dolor-os-es`** | 6.0 | `dolor` | | velenoses | **`velen-os-es`** | 6.0 | `velen` | | escribiríase | **`escribiría-se`** | 4.5 | `escribiría` | | mundiales | **`mundial-es`** | 4.5 | `mundial` | | desgraciaos | **`desgracia-os`** | 4.5 | `desgracia` | | alfayates | **`alfayat-es`** | 4.5 | `alfayat` | | cristalizase | **`cristaliza-se`** | 4.5 | `cristaliza` | | remensura | **`re-mensura`** | 4.5 | `mensura` | | desequilibraos | **`desequilibra-os`** | 4.5 | `desequilibra` | | decretase | **`decreta-se`** | 4.5 | `decreta` | | coartífice | **`co-artífice`** | 4.5 | `artífice` | | declaráse | **`declará-se`** | 4.5 | `declará` | | reordenar | **`re-ordenar`** | 4.5 | `ordenar` | | pediatres | **`pediatr-es`** | 4.5 | `pediatr` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Asturian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.43x) | | N-gram | **2-gram** | Lowest perplexity (260) | | Markov | **Context-4** | Highest predictability (92.1%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-04 02:53:18*