--- language: ady language_name: Adyghe language_family: caucasian_northwest tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-caucasian_northwest license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.197 - name: best_isotropy type: isotropy value: 0.4880 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Adyghe - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Adyghe** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.406x | 3.41 | 0.1685% | 137,125 | | **16k** | 3.759x | 3.76 | 0.1859% | 124,248 | | **32k** | 4.197x 🏆 | 4.20 | 0.2076% | 111,273 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Ермэлхэр — Кавказым ыкӏи дунаем тет лъэпкъ жъыдэдэмэ ащыщых. Армение` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁ермэлхэр ▁— ▁кавказым ▁ыкӏи ▁дунаем ▁тет ▁лъэпкъ ▁жъыдэдэмэ ▁ащыщых . ... (+1 more)` | 11 | | 16k | `▁ермэлхэр ▁— ▁кавказым ▁ыкӏи ▁дунаем ▁тет ▁лъэпкъ ▁жъыдэдэмэ ▁ащыщых . ... (+1 more)` | 11 | | 32k | `▁ермэлхэр ▁— ▁кавказым ▁ыкӏи ▁дунаем ▁тет ▁лъэпкъ ▁жъыдэдэмэ ▁ащыщых . ... (+1 more)` | 11 | **Sample 2:** `ТӀэшъу Светлан (УрысыбзэкӀэ: Светлана Тешева) Адыгэ журналист Адыгеим щыщ.` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁тӏэ шъу ▁светлан ▁( урысыбзэкӏэ : ▁светлан а ▁те ше ... (+7 more)` | 17 | | 16k | `▁тӏэ шъу ▁светлан ▁( урысыбзэкӏэ : ▁светлана ▁тешева ) ▁адыгэ ... (+4 more)` | 14 | | 32k | `▁тӏэшъу ▁светлан ▁( урысыбзэкӏэ : ▁светлана ▁тешева ) ▁адыгэ ▁журналист ... (+3 more)` | 13 | **Sample 3:** `Ашрай - быслъымэнмэ къурмэным ыуж мэфэ гъэнэфагъэм щагъэжъорэ стырыпс. category` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁аш рай ▁- ▁быслъымэн мэ ▁къур мэным ▁ыуж ▁мэфэ ▁гъэнэф ... (+9 more)` | 19 | | 16k | `▁аш рай ▁- ▁быслъымэн мэ ▁къурмэным ▁ыуж ▁мэфэ ▁гъэнэфагъэм ▁щагъэ ... (+4 more)` | 14 | | 32k | `▁ашрай ▁- ▁быслъымэнмэ ▁къурмэным ▁ыуж ▁мэфэ ▁гъэнэфагъэм ▁щагъэжъорэ ▁стырыпс . ... (+1 more)` | 11 | ### Key Findings - **Best Compression:** 32k achieves 4.197x compression - **Lowest UNK Rate:** 8k with 0.1685% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 453 | 8.82 | 625 | 42.6% | 100.0% | | **2-gram** | Subword | 407 🏆 | 8.67 | 2,126 | 56.6% | 97.3% | | **3-gram** | Word | 759 | 9.57 | 977 | 31.6% | 100.0% | | **3-gram** | Subword | 2,854 | 11.48 | 11,856 | 24.3% | 64.6% | | **4-gram** | Word | 2,909 | 11.51 | 3,378 | 13.2% | 45.0% | | **4-gram** | Subword | 10,911 | 13.41 | 36,062 | 12.4% | 39.2% | | **5-gram** | Word | 2,658 | 11.38 | 2,950 | 12.2% | 45.6% | | **5-gram** | Subword | 21,199 | 14.37 | 52,393 | 8.2% | 28.3% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `нэбгырэ млн` | 168 | | 2 | `къехъу щэпсэу` | 104 | | 3 | `м къехъу` | 89 | | 4 | `дло м` | 87 | | 5 | `адыгэ республикэм` | 80 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `м къехъу щэпсэу` | 76 | | 2 | `къехъу щэпсэу хэгэгум` | 70 | | 3 | `адыгэ республикэм и` | 46 | | 4 | `дло м хахьэ` | 44 | | 5 | `м хахьэ хэгъэгу` | 39 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `м къехъу щэпсэу хэгэгум` | 45 | | 2 | `дло м хахьэ хэгъэгу` | 39 | | 3 | `еуропэм хэт къэралыгъу къэлэ` | 23 | | 4 | `америкэм ит къэралыгъу къэлэ` | 19 | | 5 | `азием ит къэралыгъу къэлэ` | 18 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `км гъогу щыӏ къуаджэм ис` | 17 | | 2 | `гъогу щыӏ къуаджэм ис цӏыфхэр` | 17 | | 3 | `щыӏ къуаджэм ис цӏыфхэр илъэсхэм` | 17 | | 4 | `къуаджэм ис цӏыфхэр илъэсхэм тетэу` | 17 | | 5 | `ис цӏыфхэр илъэсхэм тетэу къуаджэм` | 17 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `г ъ` | 9,326 | | 2 | `ъ э` | 9,249 | | 3 | `э _` | 8,792 | | 4 | `м _` | 7,740 | | 5 | `э р` | 6,822 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `г ъ э` | 4,961 | | 2 | `_ к ъ` | 4,140 | | 3 | `э м _` | 3,581 | | 4 | `ы г ъ` | 3,362 | | 5 | `э р _` | 3,020 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `ы г ъ э` | 1,902 | | 2 | `х э р _` | 1,448 | | 3 | `а г ъ э` | 1,342 | | 4 | `х э м _` | 1,303 | | 5 | `_ к ъ э` | 1,289 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ а д ы г` | 1,062 | | 2 | `а д ы г э` | 978 | | 3 | `_ и л ъ э` | 670 | | 4 | `д ы г э _` | 651 | | 5 | `и л ъ э с` | 627 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 407 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~28% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.4341 | 1.351 | 2.09 | 22,655 | 56.6% | | **1** | Subword | 1.4193 | 2.674 | 10.02 | 450 | 0.0% | | **2** | Word | 0.0766 | 1.055 | 1.12 | 46,851 | 92.3% | | **2** | Subword | 1.1376 | 2.200 | 5.57 | 4,503 | 0.0% | | **3** | Word | 0.0248 | 1.017 | 1.04 | 51,794 | 97.5% | | **3** | Subword | 0.7466 | 1.678 | 2.95 | 25,044 | 25.3% | | **4** | Word | 0.0130 🏆 | 1.009 | 1.02 | 53,002 | 98.7% | | **4** | Subword | 0.4264 | 1.344 | 1.85 | 73,859 | 57.4% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `и дгъэпсыфынущ адыгэ лъэпкъым и 29 м н ф ф ф ф х х х хъ` 2. `адыгэ хэхэсхэм ащыухъумэн ылъэкӏыгъ мыхъугъэ мышӏагъэхэр ыгу ит тарихъ лъапсэ иӏэу кӏэхьапӏэр ӏатау ...` 3. `м ахахьэ хэгъэгу тхьаматэр халед бахах географие еуропэм ыгу рихь римыхьмэ тетэу къуаджэм ис цӏыфхэр...` **Context Size 2:** 1. `нэбгырэ млн 1 3 фэдиз ц1ыфэу дэс ау хьанэгъунэр ибгъэгъусэжьмэ млн 18 фэдиз мэхъу щыпсэухэрэм ромэ к...` 2. `къехъу щэпсэу я 67 норвегыбз дло м ахахьэ хэгъэгу эдгар ринкевичс къэрал тхьаматэр ульф кристерссон ...` 3. `м къехъу щэпсэу хэгэгум 1 240 192 км францыбзэ къэрал яйи бони хэгъэгу тхьаматэр халифа бен салман` **Context Size 3:** 1. `м къехъу щэпсэу хэгэгум 147 570 км бенгалыбзэ дло м хахьэ хэгъэгу абдель азиз бутефлика къэрал тхьэм...` 2. `къехъу щэпсэу хэгэгум 140 800 км непали дло м хахьэ ез м хэхьанэу унашъо щыт ез м и` 3. `адыгэ республикэм и псыхъу а псыхъом пэблагъэу щыт къуажэ` **Context Size 4:** 1. `м къехъу щэпсэу хэгэгум чӏырэу иӏэр 322 460 км бзэшъхьаӏэхэр францыбзэ къэрал лӏышъхьэр алассан уатт...` 2. `дло м хахьэ хэгъэгу султанэу кабоос бин саид аль саид хэгъэгу тхьаматэр фахд бин махьмуд географие а...` 3. `еуропэм хэт къэралыгъу къэлэ тирана нэбгырэ млн 3 м къехъу щэпсэу хэгэгум 9 984 670 км я 2 англыбзэ` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_шхажъырэм_ащтем` 2. `эгекъэсхэ_ари_пч` 3. `ыгу,_цинащырыхэ_` **Context Size 2:** 1. `гъэпсыр_зэрэ_ӏуад` 2. `ъэп_ву_адыгъэхьын` 3. `э_зыгэ_ж_дангьэ_т` **Context Size 3:** 1. `гъэкъхэр,_кӏэ,_гум` 2. `_къэралыгъэдунэжъы` 3. `эм_и_–_зэрал_нэхэр` **Context Size 4:** 1. `ыгъэ_гъэмрэ_приручи` 2. `хэр_бжъэдыгъуапэ_зэ` 3. `агъэхьан_хуейщ,_ахэ` ### Key Findings - **Best Predictability:** Context-4 (word) with 98.7% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (73,859 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 7,120 | | Total Tokens | 45,308 | | Mean Frequency | 6.36 | | Median Frequency | 3 | | Frequency Std Dev | 22.08 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | и | 999 | | 2 | адыгэ | 660 | | 3 | м | 508 | | 4 | илъэсым | 406 | | 5 | ащ | 391 | | 6 | я | 320 | | 7 | ары | 274 | | 8 | а | 257 | | 9 | нэбгырэ | 250 | | 10 | е | 223 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | muzea | 2 | | 2 | britishpedia | 2 | | 3 | encyklopedia | 2 | | 4 | osobistości | 2 | | 5 | rzeczypospolitej | 2 | | 6 | polskiej | 2 | | 7 | bph | 2 | | 8 | british | 2 | | 9 | publishing | 2 | | 10 | ltd | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 0.7863 | | R² (Goodness of Fit) | 0.977814 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 28.8% | | Top 1,000 | 60.5% | | Top 5,000 | 90.6% | | Top 10,000 | 0.0% | ### Key Findings - **Zipf Compliance:** R²=0.9778 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 28.8% of corpus - **Long Tail:** -2,880 words needed for remaining 100.0% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.4880 | 0.4410 | N/A | N/A | | **mono_64d** | 64 | 0.2186 | 0.3951 | N/A | N/A | | **mono_128d** | 128 | 0.0372 | 0.3901 | N/A | N/A | | **aligned_32d** | 32 | 0.4880 🏆 | 0.4477 | 0.0460 | 0.3851 | | **aligned_64d** | 64 | 0.2186 | 0.3901 | 0.2011 | 0.7701 | | **aligned_128d** | 128 | 0.0372 | 0.3927 | 0.2759 | 0.8103 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.4880 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.4094. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 27.6% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.610** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-къ` | къчр, къэлэшъо, къо | | `-зэ` | зэрэхъугъэхэм, зэфэшъхьаф, зэхигъэуцогъэгъэ | | `-къы` | къыӏуагъ, къыщыфэфедэщтхэу, къыгъэуцугъэ | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-э` | литературоведческэ, уиджыбэ, лъымрэ | | `-м` | заповедникым, хъуагъэм, ипэм | | `-р` | тхэныр, хунгариер, къчр | | `-эр` | алъытэщтыгъэр, тхыбзэр, ылъэгъурэр | | `-эм` | хъуагъэм, ипэм, псалъэжьхэм | | `-эу` | цӏэу, дэлъэу, щысэу | | `-хэр` | тыркухэр, ежьхэр, ахэр | | `-рэ` | лъымрэ, цӏэмрэ, зыфиӏорэ | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `тыгъ` | 1.84x | 28 contexts | тыгъэ, тыгъу, итыгъ | | `эпкъ` | 1.90x | 25 contexts | нэпкъ, тхэпкъ, лъэпкъ | | `ъагъ` | 2.25x | 14 contexts | лъагъо, пчъагъ, пчъагъэ | | `агъэ` | 1.63x | 39 contexts | благъэ, тхагъэ, пчагъэ | | `дыгэ` | 2.03x | 14 contexts | адыгэ, адыгэу, адыгэм | | `къуа` | 2.23x | 10 contexts | къуае, къуажэ, къуадж | | `эхэр` | 1.72x | 20 contexts | бэхэр, дзэхэр, усэхэр | | `ъхьэ` | 1.84x | 16 contexts | шъхьэ, пшъхьэ, шъхьэм | | `псэу` | 1.70x | 20 contexts | упсэу, щэпсэу, щыпсэу | | `шъхь` | 1.61x | 23 contexts | шъхьэ, пшъхьэ, шъхьэм | | `ыгъо` | 1.66x | 19 contexts | цыгъо, мыгъо, цыгъор | | `гъэх` | 1.79x | 14 contexts | багъэх, яӏагъэх, тхыгъэх | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-къ` | `-э` | 94 words | къохьапӏэ, къыхаутыгъэ | | `-къ` | `-р` | 64 words | къабзэр, къызэдыхэфэныр | | `-къ` | `-м` | 56 words | къэралыгъуэм, къунетрэм | | `-къ` | `-эр` | 52 words | къабзэр, къуаджэхэр | | `-зэ` | `-р` | 43 words | зэреджэхэр, зэрар | | `-зэ` | `-м` | 41 words | зэблэтхъуным, зэрагъэтэрэзыжьыгъэм | | `-къ` | `-эм` | 36 words | къэралыгъуэм, къунетрэм | | `-зэ` | `-эр` | 34 words | зэреджэхэр, зэпырыбгъэзэжьынхэр | | `-къ` | `-эу` | 33 words | къыщегъэжьагъэу, къинэу | | `-зэ` | `-э` | 31 words | зэкъотыныгъэ, зэралэжьырэ | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | республикэмрэ | **`республик-эм-рэ`** | 6.0 | `республик` | | макъэхэмрэ | **`макъэ-хэм-рэ`** | 6.0 | `макъэ` | | литературэмрэ | **`литератур-эм-рэ`** | 6.0 | `литератур` | | благъохэмрэ | **`благъо-хэм-рэ`** | 6.0 | `благъо` | | бзылъфыгъэмрэ | **`бзылъфыгъ-эм-рэ`** | 6.0 | `бзылъфыгъ` | | литературэр | **`литератур-эр`** | 4.5 | `литератур` | | диалектэу | **`диалект-эу`** | 4.5 | `диалект` | | агъэфедэрэ | **`агъэфедэ-рэ`** | 4.5 | `агъэфедэ` | | шъхьафитэу | **`шъхьафит-эу`** | 4.5 | `шъхьафит` | | зыкъэзыӏэтыгъэм | **`зыкъэзыӏэтыгъ-эм`** | 4.5 | `зыкъэзыӏэтыгъ` | | ишъхъэрэмрэ | **`ишъхъ-эр-эм-рэ`** | 4.5 | `ишъхъ` | | адэмыехэр | **`адэмые-хэр`** | 4.5 | `адэмые` | | зэкъоуцохэу | **`зэ-къ-оуцох-эу`** | 4.5 | `оуцох` | | ыгузэгухэм | **`ыгузэгу-хэм`** | 4.5 | `ыгузэгу` | | беслъэнейхэр | **`беслъэней-хэр`** | 4.5 | `беслъэней` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Adyghe shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **32k BPE** | Best compression (4.20x) | | N-gram | **2-gram** | Lowest perplexity (407) | | Markov | **Context-4** | Highest predictability (98.7%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 18:25:02*