asr-fon-without-diacritics / hyperparams.yaml
whettenr's picture
Upload folder using huggingface_hub
93a0f4f verified
# ################################
# Model: bestRQ + DNN + CTC
# Authors: Ryan Whetten 2025
# ################################
####################### Model Parameters ###############################
# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 80
# Transformer
d_model: 640
nhead: 8
num_encoder_layers: 12
num_decoder_layers: 0
d_ffn: 2048
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 5000
attention_type: RoPEMHA
encoder_module: conformer
dnn_activation: !new:torch.nn.LeakyReLU
# FFNN + output
dnn_neurons: 1024
dnn_dropout: 0.15
output_neurons_ctc: 36
blank_index: 0
bos_index: 1
eos_index: 2
# normalizing
normalize: !new:speechbrain.processing.features.InputNormalization
norm_type: sentence
# fbanks
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
############################## models ##########################################
CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
input_shape: (8, 10, 80)
num_blocks: 2
num_layers_per_block: 1
out_channels: (128, 32)
kernel_sizes: (5, 5)
strides: (2, 2)
residuals: (False, False)
Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR # yamllint disable-line rule:line-length
input_size: 640
tgt_vocab: !ref <output_neurons>
d_model: !ref <d_model>
nhead: !ref <nhead>
num_encoder_layers: !ref <num_encoder_layers>
num_decoder_layers: !ref <num_decoder_layers>
d_ffn: !ref <d_ffn>
dropout: !ref <transformer_dropout>
activation: !ref <activation>
conformer_activation: !ref <activation>
encoder_module: !ref <encoder_module>
attention_type: !ref <attention_type>
normalize_before: True
causal: False
# We must call an encoder wrapper so the decoder isn't run (we don't have any)
enc: !new:speechbrain.lobes.models.transformer.TransformerASR.EncoderWrapper
transformer: !ref <Transformer>
back_end_ffn: !new:speechbrain.nnet.containers.Sequential
input_shape: [null, null, !ref <d_model>]
linear1: !name:speechbrain.nnet.linear.Linear
n_neurons: !ref <dnn_neurons>
bias: True
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
activation: !new:torch.nn.LeakyReLU
drop: !new:torch.nn.Dropout
p: 0.15
linear2: !name:speechbrain.nnet.linear.Linear
n_neurons: !ref <dnn_neurons>
bias: True
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
activation2: !new:torch.nn.LeakyReLU
drop2: !new:torch.nn.Dropout
p: 0.15
linear3: !name:speechbrain.nnet.linear.Linear
n_neurons: !ref <dnn_neurons>
bias: True
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
activation3: !new:torch.nn.LeakyReLU
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dnn_neurons>
n_neurons: !ref <output_neurons_ctc>
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
# modules:
# normalize: !ref <normalize>
# CNN: !ref <CNN>
# enc: !ref <enc>
# back_end_ffn: !ref <back_end_ffn>
# ctc_lin: !ref <ctc_lin>
model: !new:torch.nn.ModuleList
- [!ref <CNN>, !ref <enc>, !ref <back_end_ffn>, !ref <ctc_lin>]
####################### Encoding & Decoding ###################################
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
compute_features: !ref <compute_features>
normalize: !ref <normalize>
CNN: !ref <CNN>
enc: !ref <enc>
back_end_ffn: !ref <back_end_ffn>
ctc_lin: !ref <ctc_lin>
log_softmax: !ref <log_softmax>
modules:
encoder: !ref <encoder>
decoding_function: !name:speechbrain.decoders.ctc_greedy_decode
blank_id: !ref <blank_index>
tokenizer: !new:sentencepiece.SentencePieceProcessor
# beam_size: 100
# beam_prune_logp: -12.0
# token_prune_min_logp: -1.2
# prune_history: False
# test_beam_search:
# blank_index: !ref <blank_index>
# beam_size: !ref <beam_size>
# beam_prune_logp: !ref <beam_prune_logp>
# token_prune_min_logp: !ref <token_prune_min_logp>
# prune_history: !ref <prune_history>
# model_dir: '/Users/ryanwhetten/Projects/stream_asr/models/brq_ls_960/1000_bpe.model'
# text_file: '/Users/ryanwhetten/Projects/stream_asr/models/brq_ls_960/train.txt'
# vocab_size: !ref <output_neurons_ctc>
# model_type: 'bpe'
# bos_id: !ref <bos_index>
# eos_id: !ref <eos_index>
# model_dir=hparams["save_folder"],
# vocab_size=hparams["output_neurons_ctc"],
# annotation_train=hparams["train_csv"],
# annotation_read="wrd",
# model_type=hparams["token_type"],
# character_coverage=hparams["character_coverage"],
# bos_id=hparams["bos_index"],
# eos_id=hparams["eos_index"],
# kenlm_model_path: null
# # Decoding parameters
# test_beam_search:
# beam_size: 200
# topk: 1
# blank_index: !ref <blank_index>
# space_token: ' ' # make sure this is the same as the one used in the tokenizer
# beam_prune_logp: -10.0
# token_prune_min_logp: -5.0
# prune_history: True
# alpha: 0.8
# beta: 1.2
# # can be downloaded from here https://www.openslr.org/11/ or trained with kenLM
# # It can either be a .bin or .arpa ; note: .arpa is much slower at loading
# # If you don't want to use an LM, comment it out or set it to null
# kenlm_model_path: !ref <kenlm_model_path>
# Pretrainer class
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
model: !ref <model>
normalize: !ref <normalize>
tokenizer: !ref <tokenizer>
# make_tokenizer_streaming_context: !name:speechbrain.tokenizers.SentencePiece.SentencePieceDecoderStreamingContext