|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample_rate: 16000 |
|
|
n_fft: 400 |
|
|
n_mels: 80 |
|
|
|
|
|
|
|
|
d_model: 640 |
|
|
nhead: 8 |
|
|
num_encoder_layers: 12 |
|
|
num_decoder_layers: 0 |
|
|
d_ffn: 2048 |
|
|
transformer_dropout: 0.1 |
|
|
activation: !name:torch.nn.GELU |
|
|
output_neurons: 5000 |
|
|
attention_type: RoPEMHA |
|
|
encoder_module: conformer |
|
|
dnn_activation: !new:torch.nn.LeakyReLU |
|
|
|
|
|
|
|
|
dnn_neurons: 1024 |
|
|
dnn_dropout: 0.15 |
|
|
output_neurons_ctc: 60 |
|
|
blank_index: 0 |
|
|
bos_index: 1 |
|
|
eos_index: 2 |
|
|
|
|
|
|
|
|
normalize: !new:speechbrain.processing.features.InputNormalization |
|
|
norm_type: sentence |
|
|
|
|
|
|
|
|
|
|
|
compute_features: !new:speechbrain.lobes.features.Fbank |
|
|
sample_rate: !ref <sample_rate> |
|
|
n_fft: !ref <n_fft> |
|
|
n_mels: !ref <n_mels> |
|
|
|
|
|
|
|
|
|
|
|
CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd |
|
|
input_shape: (8, 10, 80) |
|
|
num_blocks: 2 |
|
|
num_layers_per_block: 1 |
|
|
out_channels: (128, 32) |
|
|
kernel_sizes: (5, 5) |
|
|
strides: (2, 2) |
|
|
residuals: (False, False) |
|
|
|
|
|
Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR |
|
|
input_size: 640 |
|
|
tgt_vocab: !ref <output_neurons> |
|
|
d_model: !ref <d_model> |
|
|
nhead: !ref <nhead> |
|
|
num_encoder_layers: !ref <num_encoder_layers> |
|
|
num_decoder_layers: !ref <num_decoder_layers> |
|
|
d_ffn: !ref <d_ffn> |
|
|
dropout: !ref <transformer_dropout> |
|
|
activation: !ref <activation> |
|
|
conformer_activation: !ref <activation> |
|
|
encoder_module: !ref <encoder_module> |
|
|
attention_type: !ref <attention_type> |
|
|
normalize_before: True |
|
|
causal: False |
|
|
|
|
|
|
|
|
enc: !new:speechbrain.lobes.models.transformer.TransformerASR.EncoderWrapper |
|
|
transformer: !ref <Transformer> |
|
|
|
|
|
back_end_ffn: !new:speechbrain.nnet.containers.Sequential |
|
|
input_shape: [null, null, !ref <d_model>] |
|
|
linear1: !name:speechbrain.nnet.linear.Linear |
|
|
n_neurons: !ref <dnn_neurons> |
|
|
bias: True |
|
|
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d |
|
|
activation: !new:torch.nn.LeakyReLU |
|
|
drop: !new:torch.nn.Dropout |
|
|
p: 0.15 |
|
|
linear2: !name:speechbrain.nnet.linear.Linear |
|
|
n_neurons: !ref <dnn_neurons> |
|
|
bias: True |
|
|
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d |
|
|
activation2: !new:torch.nn.LeakyReLU |
|
|
drop2: !new:torch.nn.Dropout |
|
|
p: 0.15 |
|
|
linear3: !name:speechbrain.nnet.linear.Linear |
|
|
n_neurons: !ref <dnn_neurons> |
|
|
bias: True |
|
|
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d |
|
|
activation3: !new:torch.nn.LeakyReLU |
|
|
|
|
|
ctc_lin: !new:speechbrain.nnet.linear.Linear |
|
|
input_size: !ref <dnn_neurons> |
|
|
n_neurons: !ref <output_neurons_ctc> |
|
|
|
|
|
log_softmax: !new:speechbrain.nnet.activations.Softmax |
|
|
apply_log: True |
|
|
|
|
|
|
|
|
model: !new:torch.nn.ModuleList |
|
|
- [!ref <CNN>, !ref <enc>, !ref <back_end_ffn>, !ref <ctc_lin>] |
|
|
|
|
|
|
|
|
|
|
|
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential |
|
|
compute_features: !ref <compute_features> |
|
|
normalize: !ref <normalize> |
|
|
CNN: !ref <CNN> |
|
|
enc: !ref <enc> |
|
|
back_end_ffn: !ref <back_end_ffn> |
|
|
ctc_lin: !ref <ctc_lin> |
|
|
log_softmax: !ref <log_softmax> |
|
|
|
|
|
modules: |
|
|
encoder: !ref <encoder> |
|
|
|
|
|
decoding_function: !name:speechbrain.decoders.ctc_greedy_decode |
|
|
blank_id: !ref <blank_index> |
|
|
|
|
|
tokenizer: !new:sentencepiece.SentencePieceProcessor |
|
|
|
|
|
|
|
|
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer |
|
|
loadables: |
|
|
model: !ref <model> |
|
|
normalize: !ref <normalize> |
|
|
tokenizer: !ref <tokenizer> |
|
|
|