File size: 8,161 Bytes
1585656 ac57b94 1585656 ac57b94 1585656 3738413 06c15b1 1585656 ac57b94 1585656 b835ac0 1585656 fca5de9 1585656 fca5de9 1585656 ac57b94 1585656 ac57b94 1585656 5247229 1585656 ac57b94 1585656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
library_name: transformers
tags:
- multimodal
- multilingual
- vlm
- translation
language:
- en
- de
- nl
- es
- fr
- pt
- uk
- hi
- zh
- ru
- cs
- ko
- ja
- it
- pl
- ro
- nb
- nn
base_model:
- utter-project/TowerVideo-2B
pipeline_tag: video-text-to-text
license: cc-by-nc-sa-4.0
---
# Model Card for TowerVideo
<p align="left">
<img src="Tower.png" alt="TowerVision Logo" width="200">
</p>
TowerVision is a family of open-source multilingual vision-language models with strong capabilities optimized for a variety of vision-language use cases, including image captioning, visual understanding, summarization, question answering, and more. **TowerVision excels particularly in multimodal multilingual translation benchmarks and culturally-aware tasks**, demonstrating exceptional performance across **20 languages and dialects**.
This model card covers the TowerVision family, including the 2B and 9B parameter versions, both in their instruct-tuned (it) and pretrained (pt) variants, with the latter not undergoing instruction tuning.
- **Model Family**: TowerVision (2B, 9B variants)
- **Context length**: 8192 tokens
- **Languages**: 20+ languages including European, Asian, and other language families
<span style="font-size: 1.2em;"><strong>🌟 Try TowerVision</strong></span>: [Project Page](https://guilhermeviveiros.github.io/TowerVision.io/) | [Code Repository](https://github.com/GuilhermeViveiros/LLaVA-NeXT)
## Available Models
<p align="left">
| Model | Parameters | HF Link |
|-------|------------|---------|
| TowerVideo-2B | 2B | [🤗 utter-project/TowerVision-2B](https://huggingface.co/utter-project/TowerVideo-2B)
| TowerVideo-9B | 9B | [🤗 utter-project/TowerVision-9B](https://huggingface.co/utter-project/TowerVideo-9B)
## How to Use TowerVision
### Quick Start with Transformers
<details open>
<summary>Click to expand/collapse code</summary>
```python
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
# Load the model in half-precision
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
"utter-project/TowerVideo-2B",
device_map="auto"
)
processor = AutoProcessor.from_pretrained(
"utter-project/TowerVideo-2B"
)
# Use your local video
video_path = "your_video_path.mp4"
# Conversation using the same template
conversation = [
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": "\n<video>\nIWhat is the video about?"},
],
},
]
# Apply the chat template
inputs = processor.apply_chat_template(
conversation,
num_frames=8,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
add_special_tokens=True, # ensures <video> token is inserted
return_tensors="pt"
).to(model.device, torch.float16)
# Generate response
out = model.generate(**inputs, max_new_tokens=60)
# Decode output
decoded = processor.batch_decode(
out,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
print(decoded)
```
</details>
## Model Details
**Input**: Model accepts input text, images and video.
**Output**: Model generates text in multiple languages.
**Model Architecture**: TowerVideo uses a multilingual image-language model based on [Tower-Plus](https://huggingface.co/utter-project/TowerVision-2B) (2B and 9B parameters), paired with [SigLIP2-patch14-384](https://huggingface.co/google/siglip2-so400m-patch14-384) vision encoder through a multimodal adapter for vision-language understanding.
**Recommended Precision**: We recommend using `bfloat16` precision for optimal performance and memory efficiency when running TowerVision models.
**Languages Covered**: The model has been trained on **20 languages and dialects**:
- **European languages**: English, German, Dutch, Spanish, French, Portuguese, Italian, Polish, Czech, Romanian, Norwegian (Bokmål & Nynorsk)
- **Asian languages**: Chinese (Simplified & Traditional), Japanese, Korean, Hindi
- **Other languages**: Russian, Ukrainian
**Key Strengths**:
- **🏆 Exceptional performance on culturally-aware benchmarks** with deep understanding of cultural contexts and visual nuances
- **📊 Strong cross-lingual transfer capabilities** across diverse vision-language tasks
## Training Data
TowerVision models are trained on a video/text subset of **VisionBlocks**, a comprehensive multilingual vision-language dataset comprising **6.31M samples** across diverse categories:
| Dataset | Samples | HF Link | |
|---------|---------|---------|-------|
| VisionBlocks | 6.31M | [🤗 utter-project/VisionBlocks](https://huggingface.co/datasets/utter-project/VisionBlocks) | Coming Soon |
### Dataset Statistics
- **Total samples**: 6.31M
- **Created by our team**: 1.21M samples (~19%)
- **Human-collected/external**: 5.10M samples (~81%)
### Dataset Composition Overview
**VisionBlocks** contains samples across multiple categories with both English-only (63.1%) and multilingual (36.9%) data:
- **Chart/Plot Reasoning**: DVQA, ChartQA, PlotQA, TabMWP (~405K samples)
- **General VQA**: VQAv2, RLAIF-4V (~488K samples)
- **Document VQA**: DocVQA, TextVQA, ST-VQA, PixMo-Docs (~46K samples)
- **Reasoning/Knowledge**: A-OKVQA, OKVQA, AI2D, ScienceQA (~29K samples)
- **Multilingual/Cultural**: Pangea-Cultural, Pangea-Multi, PixMo-Cap-Translated, CulturalGround datasets (~1.6M samples)
- **Specialized VQA**: IconQA, InfographicVQA, Stratos (~34K samples)
- **Counting/Math**: TallyQA, PixMo-Count (~107K samples)
- **Vision/Text**: VBlocks-PixMo collections, EuroBlocks-SFT (~2.2M samples)
- **Video/Text**: LLaVA-Video collections (~1.4M samples)
**Collection Types**: Human-annotated, synthetically generated, and professionally translated data ensuring high quality and cultural diversity across 20+ languages.
## Evaluation
All evaluations were conducted using [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval).
### Multiple Purpose Multimodal Benchmarks
TowerVision demonstrates strong performance across diverse multimodal evaluation benchmarks:
<img src="mc-eval1.png" alt="Multiple Purpose Multimodal Benchmarks Results" width="600">
### Multimodal Multilingual Translation Tasks
TowerVision excels particularly in multimodal multilingual translation benchmarks, demonstrating state-of-the-art cross-lingual visual communication capabilities:
<img src="mc-eval2.png" alt="Multimodal Multilingual Translation Results" width="600">
### Supported Languages Performance
✅ **Fully Supported**: English, German, Dutch, Spanish, French, Portuguese, Italian, Polish, Czech, Romanian, Norwegian, Chinese, Japanese, Korean, Hindi, Russian, Ukrainian
📊 **Benchmark Coverage**: Our models are evaluated across diverse multilingual vision-language tasks, demonstrating strong cross-lingual transfer capabilities and exceptional performance in culturally-aware benchmarks.
## Citation
If you find TowerVideo useful in your research, please consider citing the following paper:
```bibtex
@misc{viveiros2025towervisionunderstandingimprovingmultilinguality,
title={TowerVision: Understanding and Improving Multilinguality in Vision-Language Models},
author={André G. Viveiros and Patrick Fernandes and Saul Santos and Sonal Sannigrahi and Emmanouil Zaranis and Nuno M. Guerreiro and Amin Farajian and Pierre Colombo and Graham Neubig and André F. T. Martins},
year={2025},
eprint={2510.21849},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2510.21849},
}
```
## Model Card Contact
For errors or additional questions about details in this model card, contact the research team.
## Acknowledgments
TowerVision builds upon the excellent work of:
- **[LLaVA-NeXT](https://github.com/GuilhermeViveiros/LLaVA-NeXT)** for the foundational vision-language architecture
- **[Tower-Plus](https://huggingface.co/Unbabel/Tower-Plus-2B)** language models for multilingual capabilities
- **[SigLIP2](https://huggingface.co/google/siglip2-so400m-patch14-384)** for robust vision encoding
- The broader multilingual NLP and multimodal communities |