File size: 8,161 Bytes
1585656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac57b94
 
 
1585656
 
ac57b94
1585656
3738413
06c15b1
1585656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac57b94
 
1585656
 
 
 
 
 
 
 
 
b835ac0
1585656
 
 
 
fca5de9
1585656
 
 
 
fca5de9
1585656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac57b94
1585656
 
 
 
 
 
 
 
 
 
 
 
 
 
ac57b94
1585656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5247229
 
 
 
 
 
 
 
1585656
 
 
 
 
 
 
 
 
 
 
ac57b94
1585656
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
library_name: transformers
tags:
- multimodal
- multilingual
- vlm
- translation
language:
- en
- de
- nl
- es
- fr
- pt
- uk
- hi
- zh
- ru
- cs
- ko
- ja
- it
- pl
- ro
- nb
- nn
base_model:
- utter-project/TowerVideo-2B
pipeline_tag: video-text-to-text
license: cc-by-nc-sa-4.0
---

# Model Card for TowerVideo

<p align="left">
<img src="Tower.png" alt="TowerVision Logo" width="200">
</p>

TowerVision is a family of open-source multilingual vision-language models with strong capabilities optimized for a variety of vision-language use cases, including image captioning, visual understanding, summarization, question answering, and more. **TowerVision excels particularly in multimodal multilingual translation benchmarks and culturally-aware tasks**, demonstrating exceptional performance across **20 languages and dialects**.

This model card covers the TowerVision family, including the 2B and 9B parameter versions, both in their instruct-tuned (it) and pretrained (pt) variants, with the latter not undergoing instruction tuning.

- **Model Family**: TowerVision (2B, 9B variants)
- **Context length**: 8192 tokens
- **Languages**: 20+ languages including European, Asian, and other language families

<span style="font-size: 1.2em;"><strong>🌟 Try TowerVision</strong></span>: [Project Page](https://guilhermeviveiros.github.io/TowerVision.io/) | [Code Repository](https://github.com/GuilhermeViveiros/LLaVA-NeXT)

## Available Models

<p align="left">

| Model | Parameters | HF Link |
|-------|------------|---------|
| TowerVideo-2B | 2B | [🤗 utter-project/TowerVision-2B](https://huggingface.co/utter-project/TowerVideo-2B)
| TowerVideo-9B | 9B | [🤗 utter-project/TowerVision-9B](https://huggingface.co/utter-project/TowerVideo-9B)

## How to Use TowerVision

### Quick Start with Transformers

<details open>
<summary>Click to expand/collapse code</summary>

```python
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration

# Load the model in half-precision
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
    "utter-project/TowerVideo-2B", 
    device_map="auto"
)

processor = AutoProcessor.from_pretrained(
    "utter-project/TowerVideo-2B"
)

# Use your local video
video_path = "your_video_path.mp4"

# Conversation using the same template
conversation = [
    {
        "role": "user",
        "content": [
            {"type": "video", "path": video_path},
            {"type": "text", "text": "\n<video>\nIWhat is the video about?"},
        ],
    },
]

# Apply the chat template
inputs = processor.apply_chat_template(
    conversation,
    num_frames=8,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    add_special_tokens=True,  # ensures <video> token is inserted
    return_tensors="pt"
).to(model.device, torch.float16)

# Generate response
out = model.generate(**inputs, max_new_tokens=60)

# Decode output
decoded = processor.batch_decode(
    out, 
    skip_special_tokens=True, 
    clean_up_tokenization_spaces=True
)

print(decoded)
```

</details>

## Model Details

**Input**: Model accepts input text, images and video.

**Output**: Model generates text in multiple languages.

**Model Architecture**: TowerVideo uses a multilingual image-language model based on [Tower-Plus](https://huggingface.co/utter-project/TowerVision-2B) (2B and 9B parameters), paired with [SigLIP2-patch14-384](https://huggingface.co/google/siglip2-so400m-patch14-384) vision encoder through a multimodal adapter for vision-language understanding.

**Recommended Precision**: We recommend using `bfloat16` precision for optimal performance and memory efficiency when running TowerVision models.

**Languages Covered**: The model has been trained on **20 languages and dialects**:
- **European languages**: English, German, Dutch, Spanish, French, Portuguese, Italian, Polish, Czech, Romanian, Norwegian (Bokmål & Nynorsk)
- **Asian languages**: Chinese (Simplified & Traditional), Japanese, Korean, Hindi  
- **Other languages**: Russian, Ukrainian

**Key Strengths**:
- **🏆 Exceptional performance on culturally-aware benchmarks** with deep understanding of cultural contexts and visual nuances
- **📊 Strong cross-lingual transfer capabilities** across diverse vision-language tasks

## Training Data

TowerVision models are trained on a video/text subset of **VisionBlocks**, a comprehensive multilingual vision-language dataset comprising **6.31M samples** across diverse categories:

| Dataset | Samples | HF Link |  |
|---------|---------|---------|-------|
| VisionBlocks | 6.31M | [🤗 utter-project/VisionBlocks](https://huggingface.co/datasets/utter-project/VisionBlocks) | Coming Soon |

### Dataset Statistics
- **Total samples**: 6.31M
- **Created by our team**: 1.21M samples (~19%)
- **Human-collected/external**: 5.10M samples (~81%)

### Dataset Composition Overview

**VisionBlocks** contains samples across multiple categories with both English-only (63.1%) and multilingual (36.9%) data:

- **Chart/Plot Reasoning**: DVQA, ChartQA, PlotQA, TabMWP (~405K samples)
- **General VQA**: VQAv2, RLAIF-4V (~488K samples) 
- **Document VQA**: DocVQA, TextVQA, ST-VQA, PixMo-Docs (~46K samples)
- **Reasoning/Knowledge**: A-OKVQA, OKVQA, AI2D, ScienceQA (~29K samples)
- **Multilingual/Cultural**: Pangea-Cultural, Pangea-Multi, PixMo-Cap-Translated, CulturalGround datasets (~1.6M samples)
- **Specialized VQA**: IconQA, InfographicVQA, Stratos (~34K samples)
- **Counting/Math**: TallyQA, PixMo-Count (~107K samples)
- **Vision/Text**: VBlocks-PixMo collections, EuroBlocks-SFT (~2.2M samples)
- **Video/Text**: LLaVA-Video collections (~1.4M samples)

**Collection Types**: Human-annotated, synthetically generated, and professionally translated data ensuring high quality and cultural diversity across 20+ languages.

## Evaluation

All evaluations were conducted using [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval).

### Multiple Purpose Multimodal Benchmarks

TowerVision demonstrates strong performance across diverse multimodal evaluation benchmarks:

<img src="mc-eval1.png" alt="Multiple Purpose Multimodal Benchmarks Results" width="600">

### Multimodal Multilingual Translation Tasks

TowerVision excels particularly in multimodal multilingual translation benchmarks, demonstrating state-of-the-art cross-lingual visual communication capabilities:

<img src="mc-eval2.png" alt="Multimodal Multilingual Translation Results" width="600">

### Supported Languages Performance**Fully Supported**: English, German, Dutch, Spanish, French, Portuguese, Italian, Polish, Czech, Romanian, Norwegian, Chinese, Japanese, Korean, Hindi, Russian, Ukrainian

📊 **Benchmark Coverage**: Our models are evaluated across diverse multilingual vision-language tasks, demonstrating strong cross-lingual transfer capabilities and exceptional performance in culturally-aware benchmarks.

## Citation

If you find TowerVideo useful in your research, please consider citing the following paper:

```bibtex
@misc{viveiros2025towervisionunderstandingimprovingmultilinguality,
      title={TowerVision: Understanding and Improving Multilinguality in Vision-Language Models}, 
      author={André G. Viveiros and Patrick Fernandes and Saul Santos and Sonal Sannigrahi and Emmanouil Zaranis and Nuno M. Guerreiro and Amin Farajian and Pierre Colombo and Graham Neubig and André F. T. Martins},
      year={2025},
      eprint={2510.21849},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2510.21849}, 
}
```

## Model Card Contact

For errors or additional questions about details in this model card, contact the research team.

## Acknowledgments

TowerVision builds upon the excellent work of:
- **[LLaVA-NeXT](https://github.com/GuilhermeViveiros/LLaVA-NeXT)** for the foundational vision-language architecture
- **[Tower-Plus](https://huggingface.co/Unbabel/Tower-Plus-2B)** language models for multilingual capabilities
- **[SigLIP2](https://huggingface.co/google/siglip2-so400m-patch14-384)** for robust vision encoding
- The broader multilingual NLP and multimodal communities