update the transformer lib cannot detect
Browse files- README.md +76 -16
- __init__.py +23 -0
- configuration_time_rcd.py +7 -0
- modeling_time_rcd.py +7 -0
README.md
CHANGED
|
@@ -14,13 +14,27 @@ pipeline_tag: time-series-classification
|
|
| 14 |
|
| 15 |
Time-RCD is a transformer-based model for zero-shot anomaly detection in time series data.
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
## Quick Start
|
| 18 |
|
| 19 |
```python
|
| 20 |
from transformers import AutoModel, AutoConfig
|
| 21 |
import numpy as np
|
| 22 |
|
| 23 |
-
# Load model
|
| 24 |
model = AutoModel.from_pretrained(
|
| 25 |
"thu-sail-lab/Time_RCD",
|
| 26 |
trust_remote_code=True
|
|
@@ -72,35 +86,44 @@ anomaly_scores = outputs.anomaly_scores.numpy()
|
|
| 72 |
from transformers import AutoModel
|
| 73 |
import numpy as np
|
| 74 |
|
|
|
|
| 75 |
model = AutoModel.from_pretrained("thu-sail-lab/Time_RCD", trust_remote_code=True)
|
| 76 |
|
| 77 |
# Your time series (n_samples, n_features)
|
| 78 |
data = np.random.randn(10000, 1)
|
| 79 |
|
| 80 |
-
# Get anomaly scores
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Detect anomalies (e.g., top 5%)
|
| 85 |
-
threshold = np.percentile(
|
| 86 |
-
anomalies =
|
| 87 |
```
|
| 88 |
|
| 89 |
### With Custom Processing
|
| 90 |
|
| 91 |
```python
|
| 92 |
-
from transformers import AutoModel
|
|
|
|
|
|
|
| 93 |
|
|
|
|
| 94 |
model = AutoModel.from_pretrained("thu-sail-lab/Time_RCD", trust_remote_code=True)
|
| 95 |
-
processor = AutoProcessor.from_pretrained("thu-sail-lab/Time_RCD", trust_remote_code=True)
|
| 96 |
|
| 97 |
-
#
|
| 98 |
-
processor
|
| 99 |
-
processor.normalize = True
|
| 100 |
|
| 101 |
-
# Process
|
|
|
|
| 102 |
processed = processor(data, return_tensors="pt")
|
|
|
|
|
|
|
| 103 |
outputs = model(**processed)
|
|
|
|
| 104 |
```
|
| 105 |
|
| 106 |
## Configuration
|
|
@@ -124,13 +147,50 @@ Evaluated on various time series anomaly detection benchmarks.
|
|
| 124 |
- Performance varies by domain
|
| 125 |
- High-dimensional data may need preprocessing
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
## Citation
|
| 128 |
|
| 129 |
```bibtex
|
| 130 |
-
@
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
}
|
| 135 |
```
|
| 136 |
|
|
|
|
| 14 |
|
| 15 |
Time-RCD is a transformer-based model for zero-shot anomaly detection in time series data.
|
| 16 |
|
| 17 |
+
## ⚠️ IMPORTANT: Custom Model Loading
|
| 18 |
+
|
| 19 |
+
**This model uses a custom architecture not built into transformers.**
|
| 20 |
+
You **MUST** include `trust_remote_code=True` when loading:
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
# ✅ CORRECT - Will work
|
| 24 |
+
from transformers import AutoModel
|
| 25 |
+
model = AutoModel.from_pretrained("your-repo/Time-RCD", trust_remote_code=True)
|
| 26 |
+
|
| 27 |
+
# ❌ WRONG - Will throw KeyError: 'time_rcd'
|
| 28 |
+
model = AutoModel.from_pretrained("your-repo/Time-RCD") # Missing trust_remote_code=True
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
## Quick Start
|
| 32 |
|
| 33 |
```python
|
| 34 |
from transformers import AutoModel, AutoConfig
|
| 35 |
import numpy as np
|
| 36 |
|
| 37 |
+
# Load model (trust_remote_code=True is REQUIRED!)
|
| 38 |
model = AutoModel.from_pretrained(
|
| 39 |
"thu-sail-lab/Time_RCD",
|
| 40 |
trust_remote_code=True
|
|
|
|
| 86 |
from transformers import AutoModel
|
| 87 |
import numpy as np
|
| 88 |
|
| 89 |
+
# IMPORTANT: trust_remote_code=True is required!
|
| 90 |
model = AutoModel.from_pretrained("thu-sail-lab/Time_RCD", trust_remote_code=True)
|
| 91 |
|
| 92 |
# Your time series (n_samples, n_features)
|
| 93 |
data = np.random.randn(10000, 1)
|
| 94 |
|
| 95 |
+
# Get anomaly scores using the zero_shot method
|
| 96 |
+
scores, logits = model.zero_shot(data)
|
| 97 |
+
|
| 98 |
+
# Flatten scores from list of batches
|
| 99 |
+
import numpy as np
|
| 100 |
+
all_scores = np.concatenate(scores, axis=0).flatten()
|
| 101 |
|
| 102 |
# Detect anomalies (e.g., top 5%)
|
| 103 |
+
threshold = np.percentile(all_scores, 95)
|
| 104 |
+
anomalies = all_scores > threshold
|
| 105 |
```
|
| 106 |
|
| 107 |
### With Custom Processing
|
| 108 |
|
| 109 |
```python
|
| 110 |
+
from transformers import AutoModel
|
| 111 |
+
from processing_time_rcd import TimeRCDProcessor
|
| 112 |
+
import numpy as np
|
| 113 |
|
| 114 |
+
# IMPORTANT: trust_remote_code=True is required!
|
| 115 |
model = AutoModel.from_pretrained("thu-sail-lab/Time_RCD", trust_remote_code=True)
|
|
|
|
| 116 |
|
| 117 |
+
# Create and configure processor
|
| 118 |
+
processor = TimeRCDProcessor(win_size=5000, normalize=True)
|
|
|
|
| 119 |
|
| 120 |
+
# Process data
|
| 121 |
+
data = np.random.randn(10000, 1)
|
| 122 |
processed = processor(data, return_tensors="pt")
|
| 123 |
+
|
| 124 |
+
# Get predictions
|
| 125 |
outputs = model(**processed)
|
| 126 |
+
anomaly_scores = outputs.anomaly_scores
|
| 127 |
```
|
| 128 |
|
| 129 |
## Configuration
|
|
|
|
| 147 |
- Performance varies by domain
|
| 148 |
- High-dimensional data may need preprocessing
|
| 149 |
|
| 150 |
+
## Troubleshooting
|
| 151 |
+
|
| 152 |
+
### KeyError: 'time_rcd'
|
| 153 |
+
|
| 154 |
+
If you see this error:
|
| 155 |
+
```
|
| 156 |
+
KeyError: 'time_rcd'
|
| 157 |
+
The checkpoint you are trying to load has model type `time_rcd` but Transformers does not recognize this architecture.
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
**Solution:** Add `trust_remote_code=True` to your loading code:
|
| 161 |
+
|
| 162 |
+
```python
|
| 163 |
+
# This will fix the error
|
| 164 |
+
model = AutoModel.from_pretrained("your-repo/Time-RCD", trust_remote_code=True)
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
This is required because Time-RCD is a custom architecture not built into the transformers library. The `trust_remote_code=True` flag tells transformers to load and execute the custom model code from the repository.
|
| 168 |
+
|
| 169 |
+
### Other Common Issues
|
| 170 |
+
|
| 171 |
+
**Issue:** `ModuleNotFoundError: No module named 'einops'`
|
| 172 |
+
**Solution:** Install einops: `pip install einops`
|
| 173 |
+
|
| 174 |
+
**Issue:** Model runs slowly on CPU
|
| 175 |
+
**Solution:** Move model to GPU: `model = model.to('cuda')`
|
| 176 |
+
|
| 177 |
+
**Issue:** Out of memory errors
|
| 178 |
+
**Solution:** Reduce window size or batch size in the processor:
|
| 179 |
+
```python
|
| 180 |
+
processor = TimeRCDProcessor(win_size=2000, batch_size=32)
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
## Citation
|
| 184 |
|
| 185 |
```bibtex
|
| 186 |
+
@misc{lan2025foundationmodelszeroshottime,
|
| 187 |
+
title={Towards Foundation Models for Zero-Shot Time Series Anomaly Detection: Leveraging Synthetic Data and Relative Context Discrepancy},
|
| 188 |
+
author={Tian Lan and Hao Duong Le and Jinbo Li and Wenjun He and Meng Wang and Chenghao Liu and Chen Zhang},
|
| 189 |
+
year={2025},
|
| 190 |
+
eprint={2509.21190},
|
| 191 |
+
archivePrefix={arXiv},
|
| 192 |
+
primaryClass={cs.LG},
|
| 193 |
+
url={https://arxiv.org/abs/2509.21190},
|
| 194 |
}
|
| 195 |
```
|
| 196 |
|
__init__.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Time-RCD: Zero-Shot Time Series Anomaly Detection
|
| 3 |
+
|
| 4 |
+
This package provides the Time-RCD model for zero-shot anomaly detection in time series data.
|
| 5 |
+
|
| 6 |
+
Usage:
|
| 7 |
+
>>> from transformers import AutoModel
|
| 8 |
+
>>> model = AutoModel.from_pretrained("your-repo/Time-RCD", trust_remote_code=True)
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
from .configuration_time_rcd import TimeRCDConfig
|
| 12 |
+
from .modeling_time_rcd import Time_RCD, TimeRCDOutput
|
| 13 |
+
from .processing_time_rcd import TimeRCDProcessor
|
| 14 |
+
|
| 15 |
+
__version__ = "1.0.0"
|
| 16 |
+
|
| 17 |
+
__all__ = [
|
| 18 |
+
"TimeRCDConfig",
|
| 19 |
+
"Time_RCD",
|
| 20 |
+
"TimeRCDOutput",
|
| 21 |
+
"TimeRCDProcessor",
|
| 22 |
+
]
|
| 23 |
+
|
configuration_time_rcd.py
CHANGED
|
@@ -102,3 +102,10 @@ class TimeRCDConfig(PretrainedConfig):
|
|
| 102 |
|
| 103 |
# Backward compatibility alias
|
| 104 |
AnomalyCLIPConfig = TimeRCDConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# Backward compatibility alias
|
| 104 |
AnomalyCLIPConfig = TimeRCDConfig
|
| 105 |
+
|
| 106 |
+
# Register config with AutoConfig when using trust_remote_code
|
| 107 |
+
try:
|
| 108 |
+
from transformers import AutoConfig
|
| 109 |
+
AutoConfig.register("time_rcd", TimeRCDConfig)
|
| 110 |
+
except Exception:
|
| 111 |
+
pass # Silently fail if already registered or in restricted environment
|
modeling_time_rcd.py
CHANGED
|
@@ -738,3 +738,10 @@ class LlamaMLP(nn.Module):
|
|
| 738 |
# For backward compatibility, create aliases
|
| 739 |
TimeRCDModel = Time_RCD # Alias for consistency
|
| 740 |
AnomalyCLIPModel = Time_RCD # For existing code that uses this name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 738 |
# For backward compatibility, create aliases
|
| 739 |
TimeRCDModel = Time_RCD # Alias for consistency
|
| 740 |
AnomalyCLIPModel = Time_RCD # For existing code that uses this name
|
| 741 |
+
|
| 742 |
+
# Register model with AutoModel when using trust_remote_code
|
| 743 |
+
try:
|
| 744 |
+
from transformers import AutoModel
|
| 745 |
+
AutoModel.register(TimeRCDConfig, Time_RCD)
|
| 746 |
+
except Exception:
|
| 747 |
+
pass # Silently fail if already registered or in restricted environment
|