Commit
·
b2b11e4
1
Parent(s):
2810bb3
🤗 Upload pretrained melgan 1M5 steps.
Browse files- config.yml +89 -0
- model.h5 +3 -0
config.yml
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# This is the hyperparameter configuration file for MelGAN.
|
| 3 |
+
# Please make sure this is adjusted for the LJSpeech dataset. If you want to
|
| 4 |
+
# apply to the other dataset, you might need to carefully change some parameters.
|
| 5 |
+
# This configuration performs 4000k iters.
|
| 6 |
+
|
| 7 |
+
###########################################################
|
| 8 |
+
# FEATURE EXTRACTION SETTING #
|
| 9 |
+
###########################################################
|
| 10 |
+
sampling_rate: 22050 # Sampling rate of dataset.
|
| 11 |
+
hop_size: 256 # Hop size.
|
| 12 |
+
format: "npy"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
###########################################################
|
| 16 |
+
# GENERATOR NETWORK ARCHITECTURE SETTING #
|
| 17 |
+
###########################################################
|
| 18 |
+
model_type: "melgan_generator"
|
| 19 |
+
|
| 20 |
+
melgan_generator_params:
|
| 21 |
+
out_channels: 1 # Number of output channels.
|
| 22 |
+
kernel_size: 7 # Kernel size of initial and final conv layers.
|
| 23 |
+
filters: 512 # Initial number of channels for conv layers.
|
| 24 |
+
upsample_scales: [8, 8, 2, 2] # List of Upsampling scales.
|
| 25 |
+
stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.
|
| 26 |
+
stacks: 3 # Number of stacks in a single residual stack module.
|
| 27 |
+
is_weight_norm: false # Use weight-norm or not.
|
| 28 |
+
|
| 29 |
+
###########################################################
|
| 30 |
+
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
|
| 31 |
+
###########################################################
|
| 32 |
+
melgan_discriminator_params:
|
| 33 |
+
out_channels: 1 # Number of output channels.
|
| 34 |
+
scales: 3 # Number of multi-scales.
|
| 35 |
+
downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling.
|
| 36 |
+
downsample_pooling_params: # Parameters of the above pooling function.
|
| 37 |
+
pool_size: 4
|
| 38 |
+
strides: 2
|
| 39 |
+
kernel_sizes: [5, 3] # List of kernel size.
|
| 40 |
+
filters: 16 # Number of channels of the initial conv layer.
|
| 41 |
+
max_downsample_filters: 1024 # Maximum number of channels of downsampling layers.
|
| 42 |
+
downsample_scales: [4, 4, 4, 4] # List of downsampling scales.
|
| 43 |
+
nonlinear_activation: "LeakyReLU" # Nonlinear activation function.
|
| 44 |
+
nonlinear_activation_params: # Parameters of nonlinear activation function.
|
| 45 |
+
alpha: 0.2
|
| 46 |
+
is_weight_norm: false # Use weight-norm or not.
|
| 47 |
+
|
| 48 |
+
###########################################################
|
| 49 |
+
# ADVERSARIAL LOSS SETTING #
|
| 50 |
+
###########################################################
|
| 51 |
+
lambda_feat_match: 10.0
|
| 52 |
+
|
| 53 |
+
###########################################################
|
| 54 |
+
# DATA LOADER SETTING #
|
| 55 |
+
###########################################################
|
| 56 |
+
batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
|
| 57 |
+
batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size.
|
| 58 |
+
batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size.
|
| 59 |
+
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
|
| 60 |
+
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
|
| 61 |
+
is_shuffle: true # shuffle dataset after each epoch.
|
| 62 |
+
|
| 63 |
+
###########################################################
|
| 64 |
+
# OPTIMIZER & SCHEDULER SETTING #
|
| 65 |
+
###########################################################
|
| 66 |
+
generator_optimizer_params:
|
| 67 |
+
lr: 0.0001 # Generator's learning rate.
|
| 68 |
+
beta_1: 0.5
|
| 69 |
+
beta_2: 0.9
|
| 70 |
+
|
| 71 |
+
discriminator_optimizer_params:
|
| 72 |
+
lr: 0.0001 # Discriminator's learning rate.
|
| 73 |
+
beta_1: 0.5
|
| 74 |
+
beta_2: 0.9
|
| 75 |
+
|
| 76 |
+
gradient_accumulation_steps: 1
|
| 77 |
+
###########################################################
|
| 78 |
+
# INTERVAL SETTING #
|
| 79 |
+
###########################################################
|
| 80 |
+
train_max_steps: 4000000 # Number of training steps.
|
| 81 |
+
save_interval_steps: 3 # Interval steps to save checkpoint.
|
| 82 |
+
eval_interval_steps: 2 # Interval steps to evaluate the network.
|
| 83 |
+
log_interval_steps: 1 # Interval steps to record the training log.
|
| 84 |
+
discriminator_train_start_steps: 0 # step to start training discriminator.
|
| 85 |
+
|
| 86 |
+
###########################################################
|
| 87 |
+
# OTHER SETTING #
|
| 88 |
+
###########################################################
|
| 89 |
+
num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
|
model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33204255555aa9992443585cfdff3befe88d2f60b94224f0493acdf43ee84f19
|
| 3 |
+
size 17142440
|