Upload hunyuan3d-paintpbr-v2-1/unet/attn_processor.py with huggingface_hub
Browse files
hunyuan3d-paintpbr-v2-1/unet/attn_processor.py
ADDED
|
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
| 2 |
+
# except for the third-party components listed below.
|
| 3 |
+
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
| 4 |
+
# in the repsective licenses of these third-party components.
|
| 5 |
+
# Users must comply with all terms and conditions of original licenses of these third-party
|
| 6 |
+
# components and must ensure that the usage of the third party components adheres to
|
| 7 |
+
# all relevant laws and regulations.
|
| 8 |
+
|
| 9 |
+
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
| 10 |
+
# their software and algorithms, including trained model weights, parameters (including
|
| 11 |
+
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
| 12 |
+
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
| 13 |
+
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from typing import Optional, Dict, Tuple, Union, Literal, List, Callable
|
| 19 |
+
from einops import rearrange
|
| 20 |
+
from diffusers.utils import deprecate
|
| 21 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class AttnUtils:
|
| 25 |
+
"""
|
| 26 |
+
Shared utility functions for attention processing.
|
| 27 |
+
|
| 28 |
+
This class provides common operations used across different attention processors
|
| 29 |
+
to eliminate code duplication and improve maintainability.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
@staticmethod
|
| 33 |
+
def check_pytorch_compatibility():
|
| 34 |
+
"""
|
| 35 |
+
Check PyTorch compatibility for scaled_dot_product_attention.
|
| 36 |
+
|
| 37 |
+
Raises:
|
| 38 |
+
ImportError: If PyTorch version doesn't support scaled_dot_product_attention
|
| 39 |
+
"""
|
| 40 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 41 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 42 |
+
|
| 43 |
+
@staticmethod
|
| 44 |
+
def handle_deprecation_warning(args, kwargs):
|
| 45 |
+
"""
|
| 46 |
+
Handle deprecation warning for the 'scale' argument.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
args: Positional arguments passed to attention processor
|
| 50 |
+
kwargs: Keyword arguments passed to attention processor
|
| 51 |
+
"""
|
| 52 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
| 53 |
+
deprecation_message = (
|
| 54 |
+
"The `scale` argument is deprecated and will be ignored."
|
| 55 |
+
"Please remove it, as passing it will raise an error in the future."
|
| 56 |
+
"`scale` should directly be passed while calling the underlying pipeline component"
|
| 57 |
+
"i.e., via `cross_attention_kwargs`."
|
| 58 |
+
)
|
| 59 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
| 60 |
+
|
| 61 |
+
@staticmethod
|
| 62 |
+
def prepare_hidden_states(
|
| 63 |
+
hidden_states, attn, temb, spatial_norm_attr="spatial_norm", group_norm_attr="group_norm"
|
| 64 |
+
):
|
| 65 |
+
"""
|
| 66 |
+
Common preprocessing of hidden states for attention computation.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
hidden_states: Input hidden states tensor
|
| 70 |
+
attn: Attention module instance
|
| 71 |
+
temb: Optional temporal embedding tensor
|
| 72 |
+
spatial_norm_attr: Attribute name for spatial normalization
|
| 73 |
+
group_norm_attr: Attribute name for group normalization
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
Tuple of (processed_hidden_states, residual, input_ndim, shape_info)
|
| 77 |
+
"""
|
| 78 |
+
residual = hidden_states
|
| 79 |
+
|
| 80 |
+
spatial_norm = getattr(attn, spatial_norm_attr, None)
|
| 81 |
+
if spatial_norm is not None:
|
| 82 |
+
hidden_states = spatial_norm(hidden_states, temb)
|
| 83 |
+
|
| 84 |
+
input_ndim = hidden_states.ndim
|
| 85 |
+
|
| 86 |
+
if input_ndim == 4:
|
| 87 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 88 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 89 |
+
else:
|
| 90 |
+
batch_size, channel, height, width = None, None, None, None
|
| 91 |
+
|
| 92 |
+
group_norm = getattr(attn, group_norm_attr, None)
|
| 93 |
+
if group_norm is not None:
|
| 94 |
+
hidden_states = group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 95 |
+
|
| 96 |
+
return hidden_states, residual, input_ndim, (batch_size, channel, height, width)
|
| 97 |
+
|
| 98 |
+
@staticmethod
|
| 99 |
+
def prepare_attention_mask(attention_mask, attn, sequence_length, batch_size):
|
| 100 |
+
"""
|
| 101 |
+
Prepare attention mask for scaled_dot_product_attention.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
attention_mask: Input attention mask tensor or None
|
| 105 |
+
attn: Attention module instance
|
| 106 |
+
sequence_length: Length of the sequence
|
| 107 |
+
batch_size: Batch size
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
Prepared attention mask tensor reshaped for multi-head attention
|
| 111 |
+
"""
|
| 112 |
+
if attention_mask is not None:
|
| 113 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 114 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 115 |
+
return attention_mask
|
| 116 |
+
|
| 117 |
+
@staticmethod
|
| 118 |
+
def reshape_qkv_for_attention(tensor, batch_size, attn_heads, head_dim):
|
| 119 |
+
"""
|
| 120 |
+
Reshape Q/K/V tensors for multi-head attention computation.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
tensor: Input tensor to reshape
|
| 124 |
+
batch_size: Batch size
|
| 125 |
+
attn_heads: Number of attention heads
|
| 126 |
+
head_dim: Dimension per attention head
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
Reshaped tensor with shape [batch_size, attn_heads, seq_len, head_dim]
|
| 130 |
+
"""
|
| 131 |
+
return tensor.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
| 132 |
+
|
| 133 |
+
@staticmethod
|
| 134 |
+
def apply_norms(query, key, norm_q, norm_k):
|
| 135 |
+
"""
|
| 136 |
+
Apply Q/K normalization layers if available.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
query: Query tensor
|
| 140 |
+
key: Key tensor
|
| 141 |
+
norm_q: Query normalization layer (optional)
|
| 142 |
+
norm_k: Key normalization layer (optional)
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
Tuple of (normalized_query, normalized_key)
|
| 146 |
+
"""
|
| 147 |
+
if norm_q is not None:
|
| 148 |
+
query = norm_q(query)
|
| 149 |
+
if norm_k is not None:
|
| 150 |
+
key = norm_k(key)
|
| 151 |
+
return query, key
|
| 152 |
+
|
| 153 |
+
@staticmethod
|
| 154 |
+
def finalize_output(hidden_states, input_ndim, shape_info, attn, residual, to_out):
|
| 155 |
+
"""
|
| 156 |
+
Common output processing including projection, dropout, reshaping, and residual connection.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
hidden_states: Processed hidden states from attention
|
| 160 |
+
input_ndim: Original input tensor dimensions
|
| 161 |
+
shape_info: Tuple containing original shape information
|
| 162 |
+
attn: Attention module instance
|
| 163 |
+
residual: Residual connection tensor
|
| 164 |
+
to_out: Output projection layers [linear, dropout]
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
Final output tensor after all processing steps
|
| 168 |
+
"""
|
| 169 |
+
batch_size, channel, height, width = shape_info
|
| 170 |
+
|
| 171 |
+
# Apply output projection and dropout
|
| 172 |
+
hidden_states = to_out[0](hidden_states)
|
| 173 |
+
hidden_states = to_out[1](hidden_states)
|
| 174 |
+
|
| 175 |
+
# Reshape back if needed
|
| 176 |
+
if input_ndim == 4:
|
| 177 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 178 |
+
|
| 179 |
+
# Apply residual connection
|
| 180 |
+
if attn.residual_connection:
|
| 181 |
+
hidden_states = hidden_states + residual
|
| 182 |
+
|
| 183 |
+
# Apply rescaling
|
| 184 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 185 |
+
return hidden_states
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# Base class for attention processors (eliminating initialization duplication)
|
| 189 |
+
class BaseAttnProcessor(nn.Module):
|
| 190 |
+
"""
|
| 191 |
+
Base class for attention processors with common initialization.
|
| 192 |
+
|
| 193 |
+
This base class provides shared parameter initialization and module registration
|
| 194 |
+
functionality to reduce code duplication across different attention processor types.
|
| 195 |
+
"""
|
| 196 |
+
|
| 197 |
+
def __init__(
|
| 198 |
+
self,
|
| 199 |
+
query_dim: int,
|
| 200 |
+
pbr_setting: List[str] = ["albedo", "mr"],
|
| 201 |
+
cross_attention_dim: Optional[int] = None,
|
| 202 |
+
heads: int = 8,
|
| 203 |
+
kv_heads: Optional[int] = None,
|
| 204 |
+
dim_head: int = 64,
|
| 205 |
+
dropout: float = 0.0,
|
| 206 |
+
bias: bool = False,
|
| 207 |
+
upcast_attention: bool = False,
|
| 208 |
+
upcast_softmax: bool = False,
|
| 209 |
+
cross_attention_norm: Optional[str] = None,
|
| 210 |
+
cross_attention_norm_num_groups: int = 32,
|
| 211 |
+
qk_norm: Optional[str] = None,
|
| 212 |
+
added_kv_proj_dim: Optional[int] = None,
|
| 213 |
+
added_proj_bias: Optional[bool] = True,
|
| 214 |
+
norm_num_groups: Optional[int] = None,
|
| 215 |
+
spatial_norm_dim: Optional[int] = None,
|
| 216 |
+
out_bias: bool = True,
|
| 217 |
+
scale_qk: bool = True,
|
| 218 |
+
only_cross_attention: bool = False,
|
| 219 |
+
eps: float = 1e-5,
|
| 220 |
+
rescale_output_factor: float = 1.0,
|
| 221 |
+
residual_connection: bool = False,
|
| 222 |
+
_from_deprecated_attn_block: bool = False,
|
| 223 |
+
processor: Optional["AttnProcessor"] = None,
|
| 224 |
+
out_dim: int = None,
|
| 225 |
+
out_context_dim: int = None,
|
| 226 |
+
context_pre_only=None,
|
| 227 |
+
pre_only=False,
|
| 228 |
+
elementwise_affine: bool = True,
|
| 229 |
+
is_causal: bool = False,
|
| 230 |
+
**kwargs,
|
| 231 |
+
):
|
| 232 |
+
"""
|
| 233 |
+
Initialize base attention processor with common parameters.
|
| 234 |
+
|
| 235 |
+
Args:
|
| 236 |
+
query_dim: Dimension of query features
|
| 237 |
+
pbr_setting: List of PBR material types to process (e.g., ["albedo", "mr"])
|
| 238 |
+
cross_attention_dim: Dimension of cross-attention features (optional)
|
| 239 |
+
heads: Number of attention heads
|
| 240 |
+
kv_heads: Number of key-value heads for grouped query attention (optional)
|
| 241 |
+
dim_head: Dimension per attention head
|
| 242 |
+
dropout: Dropout rate
|
| 243 |
+
bias: Whether to use bias in linear projections
|
| 244 |
+
upcast_attention: Whether to upcast attention computation to float32
|
| 245 |
+
upcast_softmax: Whether to upcast softmax computation to float32
|
| 246 |
+
cross_attention_norm: Type of cross-attention normalization (optional)
|
| 247 |
+
cross_attention_norm_num_groups: Number of groups for cross-attention norm
|
| 248 |
+
qk_norm: Type of query-key normalization (optional)
|
| 249 |
+
added_kv_proj_dim: Dimension for additional key-value projections (optional)
|
| 250 |
+
added_proj_bias: Whether to use bias in additional projections
|
| 251 |
+
norm_num_groups: Number of groups for normalization (optional)
|
| 252 |
+
spatial_norm_dim: Dimension for spatial normalization (optional)
|
| 253 |
+
out_bias: Whether to use bias in output projection
|
| 254 |
+
scale_qk: Whether to scale query-key products
|
| 255 |
+
only_cross_attention: Whether to only perform cross-attention
|
| 256 |
+
eps: Small epsilon value for numerical stability
|
| 257 |
+
rescale_output_factor: Factor to rescale output values
|
| 258 |
+
residual_connection: Whether to use residual connections
|
| 259 |
+
_from_deprecated_attn_block: Flag for deprecated attention blocks
|
| 260 |
+
processor: Optional attention processor instance
|
| 261 |
+
out_dim: Output dimension (optional)
|
| 262 |
+
out_context_dim: Output context dimension (optional)
|
| 263 |
+
context_pre_only: Whether to only process context in pre-processing
|
| 264 |
+
pre_only: Whether to only perform pre-processing
|
| 265 |
+
elementwise_affine: Whether to use element-wise affine transformations
|
| 266 |
+
is_causal: Whether to use causal attention masking
|
| 267 |
+
**kwargs: Additional keyword arguments
|
| 268 |
+
"""
|
| 269 |
+
super().__init__()
|
| 270 |
+
AttnUtils.check_pytorch_compatibility()
|
| 271 |
+
|
| 272 |
+
# Store common attributes
|
| 273 |
+
self.pbr_setting = pbr_setting
|
| 274 |
+
self.n_pbr_tokens = len(self.pbr_setting)
|
| 275 |
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
| 276 |
+
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
|
| 277 |
+
self.query_dim = query_dim
|
| 278 |
+
self.use_bias = bias
|
| 279 |
+
self.is_cross_attention = cross_attention_dim is not None
|
| 280 |
+
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
| 281 |
+
self.upcast_attention = upcast_attention
|
| 282 |
+
self.upcast_softmax = upcast_softmax
|
| 283 |
+
self.rescale_output_factor = rescale_output_factor
|
| 284 |
+
self.residual_connection = residual_connection
|
| 285 |
+
self.dropout = dropout
|
| 286 |
+
self.fused_projections = False
|
| 287 |
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
| 288 |
+
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
|
| 289 |
+
self.context_pre_only = context_pre_only
|
| 290 |
+
self.pre_only = pre_only
|
| 291 |
+
self.is_causal = is_causal
|
| 292 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
| 293 |
+
self.scale_qk = scale_qk
|
| 294 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
| 295 |
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
| 296 |
+
self.sliceable_head_dim = heads
|
| 297 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
| 298 |
+
self.only_cross_attention = only_cross_attention
|
| 299 |
+
self.added_proj_bias = added_proj_bias
|
| 300 |
+
|
| 301 |
+
# Validation
|
| 302 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
| 303 |
+
raise ValueError(
|
| 304 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None."
|
| 305 |
+
"Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
def register_pbr_modules(self, module_types: List[str], **kwargs):
|
| 309 |
+
"""
|
| 310 |
+
Generic PBR module registration to eliminate code repetition.
|
| 311 |
+
|
| 312 |
+
Dynamically registers PyTorch modules for different PBR material types
|
| 313 |
+
based on the specified module types and PBR settings.
|
| 314 |
+
|
| 315 |
+
Args:
|
| 316 |
+
module_types: List of module types to register ("qkv", "v_only", "out", "add_kv")
|
| 317 |
+
**kwargs: Additional arguments for module configuration
|
| 318 |
+
"""
|
| 319 |
+
for pbr_token in self.pbr_setting:
|
| 320 |
+
if pbr_token == "albedo":
|
| 321 |
+
continue
|
| 322 |
+
|
| 323 |
+
for module_type in module_types:
|
| 324 |
+
if module_type == "qkv":
|
| 325 |
+
self.register_module(
|
| 326 |
+
f"to_q_{pbr_token}", nn.Linear(self.query_dim, self.inner_dim, bias=self.use_bias)
|
| 327 |
+
)
|
| 328 |
+
self.register_module(
|
| 329 |
+
f"to_k_{pbr_token}", nn.Linear(self.cross_attention_dim, self.inner_dim, bias=self.use_bias)
|
| 330 |
+
)
|
| 331 |
+
self.register_module(
|
| 332 |
+
f"to_v_{pbr_token}", nn.Linear(self.cross_attention_dim, self.inner_dim, bias=self.use_bias)
|
| 333 |
+
)
|
| 334 |
+
elif module_type == "v_only":
|
| 335 |
+
self.register_module(
|
| 336 |
+
f"to_v_{pbr_token}", nn.Linear(self.cross_attention_dim, self.inner_dim, bias=self.use_bias)
|
| 337 |
+
)
|
| 338 |
+
elif module_type == "out":
|
| 339 |
+
if not self.pre_only:
|
| 340 |
+
self.register_module(
|
| 341 |
+
f"to_out_{pbr_token}",
|
| 342 |
+
nn.ModuleList(
|
| 343 |
+
[
|
| 344 |
+
nn.Linear(self.inner_dim, self.out_dim, bias=kwargs.get("out_bias", True)),
|
| 345 |
+
nn.Dropout(self.dropout),
|
| 346 |
+
]
|
| 347 |
+
),
|
| 348 |
+
)
|
| 349 |
+
else:
|
| 350 |
+
self.register_module(f"to_out_{pbr_token}", None)
|
| 351 |
+
elif module_type == "add_kv":
|
| 352 |
+
if self.added_kv_proj_dim is not None:
|
| 353 |
+
self.register_module(
|
| 354 |
+
f"add_k_proj_{pbr_token}",
|
| 355 |
+
nn.Linear(self.added_kv_proj_dim, self.inner_kv_dim, bias=self.added_proj_bias),
|
| 356 |
+
)
|
| 357 |
+
self.register_module(
|
| 358 |
+
f"add_v_proj_{pbr_token}",
|
| 359 |
+
nn.Linear(self.added_kv_proj_dim, self.inner_kv_dim, bias=self.added_proj_bias),
|
| 360 |
+
)
|
| 361 |
+
else:
|
| 362 |
+
self.register_module(f"add_k_proj_{pbr_token}", None)
|
| 363 |
+
self.register_module(f"add_v_proj_{pbr_token}", None)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
# Rotary Position Embedding utilities (specialized for PoseRoPE)
|
| 367 |
+
class RotaryEmbedding:
|
| 368 |
+
"""
|
| 369 |
+
Rotary position embedding utilities for 3D spatial attention.
|
| 370 |
+
|
| 371 |
+
Provides functions to compute and apply rotary position embeddings (RoPE)
|
| 372 |
+
for 1D, 3D spatial coordinates used in 3D-aware attention mechanisms.
|
| 373 |
+
"""
|
| 374 |
+
|
| 375 |
+
@staticmethod
|
| 376 |
+
def get_1d_rotary_pos_embed(dim: int, pos: torch.Tensor, theta: float = 10000.0, linear_factor=1.0, ntk_factor=1.0):
|
| 377 |
+
"""
|
| 378 |
+
Compute 1D rotary position embeddings.
|
| 379 |
+
|
| 380 |
+
Args:
|
| 381 |
+
dim: Embedding dimension (must be even)
|
| 382 |
+
pos: Position tensor
|
| 383 |
+
theta: Base frequency for rotary embeddings
|
| 384 |
+
linear_factor: Linear scaling factor
|
| 385 |
+
ntk_factor: NTK (Neural Tangent Kernel) scaling factor
|
| 386 |
+
|
| 387 |
+
Returns:
|
| 388 |
+
Tuple of (cos_embeddings, sin_embeddings)
|
| 389 |
+
"""
|
| 390 |
+
assert dim % 2 == 0
|
| 391 |
+
theta = theta * ntk_factor
|
| 392 |
+
freqs = (
|
| 393 |
+
1.0
|
| 394 |
+
/ (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim))
|
| 395 |
+
/ linear_factor
|
| 396 |
+
)
|
| 397 |
+
freqs = torch.outer(pos, freqs)
|
| 398 |
+
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float()
|
| 399 |
+
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float()
|
| 400 |
+
return freqs_cos, freqs_sin
|
| 401 |
+
|
| 402 |
+
@staticmethod
|
| 403 |
+
def get_3d_rotary_pos_embed(position, embed_dim, voxel_resolution, theta: int = 10000):
|
| 404 |
+
"""
|
| 405 |
+
Compute 3D rotary position embeddings for spatial coordinates.
|
| 406 |
+
|
| 407 |
+
Args:
|
| 408 |
+
position: 3D position tensor with shape [..., 3]
|
| 409 |
+
embed_dim: Embedding dimension
|
| 410 |
+
voxel_resolution: Resolution of the voxel grid
|
| 411 |
+
theta: Base frequency for rotary embeddings
|
| 412 |
+
|
| 413 |
+
Returns:
|
| 414 |
+
Tuple of (cos_embeddings, sin_embeddings) for 3D positions
|
| 415 |
+
"""
|
| 416 |
+
assert position.shape[-1] == 3
|
| 417 |
+
dim_xy = embed_dim // 8 * 3
|
| 418 |
+
dim_z = embed_dim // 8 * 2
|
| 419 |
+
|
| 420 |
+
grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device)
|
| 421 |
+
freqs_xy = RotaryEmbedding.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta)
|
| 422 |
+
freqs_z = RotaryEmbedding.get_1d_rotary_pos_embed(dim_z, grid, theta=theta)
|
| 423 |
+
|
| 424 |
+
xy_cos, xy_sin = freqs_xy
|
| 425 |
+
z_cos, z_sin = freqs_z
|
| 426 |
+
|
| 427 |
+
embed_flattn = position.view(-1, position.shape[-1])
|
| 428 |
+
x_cos = xy_cos[embed_flattn[:, 0], :]
|
| 429 |
+
x_sin = xy_sin[embed_flattn[:, 0], :]
|
| 430 |
+
y_cos = xy_cos[embed_flattn[:, 1], :]
|
| 431 |
+
y_sin = xy_sin[embed_flattn[:, 1], :]
|
| 432 |
+
z_cos = z_cos[embed_flattn[:, 2], :]
|
| 433 |
+
z_sin = z_sin[embed_flattn[:, 2], :]
|
| 434 |
+
|
| 435 |
+
cos = torch.cat((x_cos, y_cos, z_cos), dim=-1)
|
| 436 |
+
sin = torch.cat((x_sin, y_sin, z_sin), dim=-1)
|
| 437 |
+
|
| 438 |
+
cos = cos.view(*position.shape[:-1], embed_dim)
|
| 439 |
+
sin = sin.view(*position.shape[:-1], embed_dim)
|
| 440 |
+
return cos, sin
|
| 441 |
+
|
| 442 |
+
@staticmethod
|
| 443 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]]):
|
| 444 |
+
"""
|
| 445 |
+
Apply rotary position embeddings to input tensor.
|
| 446 |
+
|
| 447 |
+
Args:
|
| 448 |
+
x: Input tensor to apply rotary embeddings to
|
| 449 |
+
freqs_cis: Tuple of (cos_embeddings, sin_embeddings) or single tensor
|
| 450 |
+
|
| 451 |
+
Returns:
|
| 452 |
+
Tensor with rotary position embeddings applied
|
| 453 |
+
"""
|
| 454 |
+
cos, sin = freqs_cis
|
| 455 |
+
cos, sin = cos.to(x.device), sin.to(x.device)
|
| 456 |
+
cos = cos.unsqueeze(1)
|
| 457 |
+
sin = sin.unsqueeze(1)
|
| 458 |
+
|
| 459 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)
|
| 460 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
| 461 |
+
|
| 462 |
+
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
| 463 |
+
return out
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
# Core attention processing logic (eliminating major duplication)
|
| 467 |
+
class AttnCore:
|
| 468 |
+
"""
|
| 469 |
+
Core attention processing logic shared across processors.
|
| 470 |
+
|
| 471 |
+
This class provides the fundamental attention computation pipeline
|
| 472 |
+
that can be reused across different attention processor implementations.
|
| 473 |
+
"""
|
| 474 |
+
|
| 475 |
+
@staticmethod
|
| 476 |
+
def process_attention_base(
|
| 477 |
+
attn: Attention,
|
| 478 |
+
hidden_states: torch.Tensor,
|
| 479 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 480 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 481 |
+
temb: Optional[torch.Tensor] = None,
|
| 482 |
+
get_qkv_fn: Callable = None,
|
| 483 |
+
apply_rope_fn: Optional[Callable] = None,
|
| 484 |
+
**kwargs,
|
| 485 |
+
):
|
| 486 |
+
"""
|
| 487 |
+
Generic attention processing core shared across different processors.
|
| 488 |
+
|
| 489 |
+
This function implements the common attention computation pipeline including:
|
| 490 |
+
1. Hidden state preprocessing
|
| 491 |
+
2. Attention mask preparation
|
| 492 |
+
3. Q/K/V computation via provided function
|
| 493 |
+
4. Tensor reshaping for multi-head attention
|
| 494 |
+
5. Optional normalization and RoPE application
|
| 495 |
+
6. Scaled dot-product attention computation
|
| 496 |
+
|
| 497 |
+
Args:
|
| 498 |
+
attn: Attention module instance
|
| 499 |
+
hidden_states: Input hidden states tensor
|
| 500 |
+
encoder_hidden_states: Optional encoder hidden states for cross-attention
|
| 501 |
+
attention_mask: Optional attention mask tensor
|
| 502 |
+
temb: Optional temporal embedding tensor
|
| 503 |
+
get_qkv_fn: Function to compute Q, K, V tensors
|
| 504 |
+
apply_rope_fn: Optional function to apply rotary position embeddings
|
| 505 |
+
**kwargs: Additional keyword arguments passed to subfunctions
|
| 506 |
+
|
| 507 |
+
Returns:
|
| 508 |
+
Tuple containing (attention_output, residual, input_ndim, shape_info,
|
| 509 |
+
batch_size, num_heads, head_dim)
|
| 510 |
+
"""
|
| 511 |
+
# Prepare hidden states
|
| 512 |
+
hidden_states, residual, input_ndim, shape_info = AttnUtils.prepare_hidden_states(hidden_states, attn, temb)
|
| 513 |
+
|
| 514 |
+
batch_size, sequence_length, _ = (
|
| 515 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
# Prepare attention mask
|
| 519 |
+
attention_mask = AttnUtils.prepare_attention_mask(attention_mask, attn, sequence_length, batch_size)
|
| 520 |
+
|
| 521 |
+
# Get Q, K, V
|
| 522 |
+
if encoder_hidden_states is None:
|
| 523 |
+
encoder_hidden_states = hidden_states
|
| 524 |
+
elif attn.norm_cross:
|
| 525 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 526 |
+
|
| 527 |
+
query, key, value = get_qkv_fn(attn, hidden_states, encoder_hidden_states, **kwargs)
|
| 528 |
+
|
| 529 |
+
# Reshape for attention
|
| 530 |
+
inner_dim = key.shape[-1]
|
| 531 |
+
head_dim = inner_dim // attn.heads
|
| 532 |
+
|
| 533 |
+
query = AttnUtils.reshape_qkv_for_attention(query, batch_size, attn.heads, head_dim)
|
| 534 |
+
key = AttnUtils.reshape_qkv_for_attention(key, batch_size, attn.heads, head_dim)
|
| 535 |
+
value = AttnUtils.reshape_qkv_for_attention(value, batch_size, attn.heads, value.shape[-1] // attn.heads)
|
| 536 |
+
|
| 537 |
+
# Apply normalization
|
| 538 |
+
query, key = AttnUtils.apply_norms(query, key, getattr(attn, "norm_q", None), getattr(attn, "norm_k", None))
|
| 539 |
+
|
| 540 |
+
# Apply RoPE if provided
|
| 541 |
+
if apply_rope_fn is not None:
|
| 542 |
+
query, key = apply_rope_fn(query, key, head_dim, **kwargs)
|
| 543 |
+
|
| 544 |
+
# Compute attention
|
| 545 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 546 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
return hidden_states, residual, input_ndim, shape_info, batch_size, attn.heads, head_dim
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
# Specific processor implementations (minimal unique code)
|
| 553 |
+
class PoseRoPEAttnProcessor2_0:
|
| 554 |
+
"""
|
| 555 |
+
Attention processor with Rotary Position Encoding (RoPE) for 3D spatial awareness.
|
| 556 |
+
|
| 557 |
+
This processor extends standard attention with 3D rotary position embeddings
|
| 558 |
+
to provide spatial awareness for 3D scene understanding tasks.
|
| 559 |
+
"""
|
| 560 |
+
|
| 561 |
+
def __init__(self):
|
| 562 |
+
"""Initialize the RoPE attention processor."""
|
| 563 |
+
AttnUtils.check_pytorch_compatibility()
|
| 564 |
+
|
| 565 |
+
def __call__(
|
| 566 |
+
self,
|
| 567 |
+
attn: Attention,
|
| 568 |
+
hidden_states: torch.Tensor,
|
| 569 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 570 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 571 |
+
position_indices: Dict = None,
|
| 572 |
+
temb: Optional[torch.Tensor] = None,
|
| 573 |
+
n_pbrs=1,
|
| 574 |
+
*args,
|
| 575 |
+
**kwargs,
|
| 576 |
+
) -> torch.Tensor:
|
| 577 |
+
"""
|
| 578 |
+
Apply RoPE-enhanced attention computation.
|
| 579 |
+
|
| 580 |
+
Args:
|
| 581 |
+
attn: Attention module instance
|
| 582 |
+
hidden_states: Input hidden states tensor
|
| 583 |
+
encoder_hidden_states: Optional encoder hidden states for cross-attention
|
| 584 |
+
attention_mask: Optional attention mask tensor
|
| 585 |
+
position_indices: Dictionary containing 3D position information for RoPE
|
| 586 |
+
temb: Optional temporal embedding tensor
|
| 587 |
+
n_pbrs: Number of PBR material types
|
| 588 |
+
*args: Additional positional arguments
|
| 589 |
+
**kwargs: Additional keyword arguments
|
| 590 |
+
|
| 591 |
+
Returns:
|
| 592 |
+
Attention output tensor with applied rotary position encodings
|
| 593 |
+
"""
|
| 594 |
+
AttnUtils.handle_deprecation_warning(args, kwargs)
|
| 595 |
+
|
| 596 |
+
def get_qkv(attn, hidden_states, encoder_hidden_states, **kwargs):
|
| 597 |
+
return attn.to_q(hidden_states), attn.to_k(encoder_hidden_states), attn.to_v(encoder_hidden_states)
|
| 598 |
+
|
| 599 |
+
def apply_rope(query, key, head_dim, **kwargs):
|
| 600 |
+
if position_indices is not None:
|
| 601 |
+
if head_dim in position_indices:
|
| 602 |
+
image_rotary_emb = position_indices[head_dim]
|
| 603 |
+
else:
|
| 604 |
+
image_rotary_emb = RotaryEmbedding.get_3d_rotary_pos_embed(
|
| 605 |
+
rearrange(
|
| 606 |
+
position_indices["voxel_indices"].unsqueeze(1).repeat(1, n_pbrs, 1, 1),
|
| 607 |
+
"b n_pbrs l c -> (b n_pbrs) l c",
|
| 608 |
+
),
|
| 609 |
+
head_dim,
|
| 610 |
+
voxel_resolution=position_indices["voxel_resolution"],
|
| 611 |
+
)
|
| 612 |
+
position_indices[head_dim] = image_rotary_emb
|
| 613 |
+
|
| 614 |
+
query = RotaryEmbedding.apply_rotary_emb(query, image_rotary_emb)
|
| 615 |
+
key = RotaryEmbedding.apply_rotary_emb(key, image_rotary_emb)
|
| 616 |
+
return query, key
|
| 617 |
+
|
| 618 |
+
# Core attention processing
|
| 619 |
+
hidden_states, residual, input_ndim, shape_info, batch_size, heads, head_dim = AttnCore.process_attention_base(
|
| 620 |
+
attn,
|
| 621 |
+
hidden_states,
|
| 622 |
+
encoder_hidden_states,
|
| 623 |
+
attention_mask,
|
| 624 |
+
temb,
|
| 625 |
+
get_qkv_fn=get_qkv,
|
| 626 |
+
apply_rope_fn=apply_rope,
|
| 627 |
+
position_indices=position_indices,
|
| 628 |
+
n_pbrs=n_pbrs,
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
# Finalize output
|
| 632 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, heads * head_dim)
|
| 633 |
+
hidden_states = hidden_states.to(hidden_states.dtype)
|
| 634 |
+
|
| 635 |
+
return AttnUtils.finalize_output(hidden_states, input_ndim, shape_info, attn, residual, attn.to_out)
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
class SelfAttnProcessor2_0(BaseAttnProcessor):
|
| 639 |
+
"""
|
| 640 |
+
Self-attention processor with PBR (Physically Based Rendering) material support.
|
| 641 |
+
|
| 642 |
+
This processor handles multiple PBR material types (e.g., albedo, metallic-roughness)
|
| 643 |
+
with separate attention computation paths for each material type.
|
| 644 |
+
"""
|
| 645 |
+
|
| 646 |
+
def __init__(self, **kwargs):
|
| 647 |
+
"""
|
| 648 |
+
Initialize self-attention processor with PBR support.
|
| 649 |
+
|
| 650 |
+
Args:
|
| 651 |
+
**kwargs: Arguments passed to BaseAttnProcessor initialization
|
| 652 |
+
"""
|
| 653 |
+
super().__init__(**kwargs)
|
| 654 |
+
self.register_pbr_modules(["qkv", "out", "add_kv"], **kwargs)
|
| 655 |
+
|
| 656 |
+
def process_single(
|
| 657 |
+
self,
|
| 658 |
+
attn: Attention,
|
| 659 |
+
hidden_states: torch.Tensor,
|
| 660 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 661 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 662 |
+
temb: Optional[torch.Tensor] = None,
|
| 663 |
+
token: Literal["albedo", "mr"] = "albedo",
|
| 664 |
+
multiple_devices=False,
|
| 665 |
+
*args,
|
| 666 |
+
**kwargs,
|
| 667 |
+
):
|
| 668 |
+
"""
|
| 669 |
+
Process attention for a single PBR material type.
|
| 670 |
+
|
| 671 |
+
Args:
|
| 672 |
+
attn: Attention module instance
|
| 673 |
+
hidden_states: Input hidden states tensor
|
| 674 |
+
encoder_hidden_states: Optional encoder hidden states for cross-attention
|
| 675 |
+
attention_mask: Optional attention mask tensor
|
| 676 |
+
temb: Optional temporal embedding tensor
|
| 677 |
+
token: PBR material type to process ("albedo", "mr", etc.)
|
| 678 |
+
multiple_devices: Whether to use multiple GPU devices
|
| 679 |
+
*args: Additional positional arguments
|
| 680 |
+
**kwargs: Additional keyword arguments
|
| 681 |
+
|
| 682 |
+
Returns:
|
| 683 |
+
Processed attention output for the specified PBR material type
|
| 684 |
+
"""
|
| 685 |
+
target = attn if token == "albedo" else attn.processor
|
| 686 |
+
token_suffix = "" if token == "albedo" else "_" + token
|
| 687 |
+
|
| 688 |
+
# Device management (if needed)
|
| 689 |
+
if multiple_devices:
|
| 690 |
+
device = torch.device("cuda:0") if token == "albedo" else torch.device("cuda:1")
|
| 691 |
+
for attr in [f"to_q{token_suffix}", f"to_k{token_suffix}", f"to_v{token_suffix}", f"to_out{token_suffix}"]:
|
| 692 |
+
getattr(target, attr).to(device)
|
| 693 |
+
|
| 694 |
+
def get_qkv(attn, hidden_states, encoder_hidden_states, **kwargs):
|
| 695 |
+
return (
|
| 696 |
+
getattr(target, f"to_q{token_suffix}")(hidden_states),
|
| 697 |
+
getattr(target, f"to_k{token_suffix}")(encoder_hidden_states),
|
| 698 |
+
getattr(target, f"to_v{token_suffix}")(encoder_hidden_states),
|
| 699 |
+
)
|
| 700 |
+
|
| 701 |
+
# Core processing using shared logic
|
| 702 |
+
hidden_states, residual, input_ndim, shape_info, batch_size, heads, head_dim = AttnCore.process_attention_base(
|
| 703 |
+
attn, hidden_states, encoder_hidden_states, attention_mask, temb, get_qkv_fn=get_qkv
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
# Finalize
|
| 707 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, heads * head_dim)
|
| 708 |
+
hidden_states = hidden_states.to(hidden_states.dtype)
|
| 709 |
+
|
| 710 |
+
return AttnUtils.finalize_output(
|
| 711 |
+
hidden_states, input_ndim, shape_info, attn, residual, getattr(target, f"to_out{token_suffix}")
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
def __call__(
|
| 715 |
+
self,
|
| 716 |
+
attn: Attention,
|
| 717 |
+
hidden_states: torch.Tensor,
|
| 718 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 719 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 720 |
+
temb: Optional[torch.Tensor] = None,
|
| 721 |
+
*args,
|
| 722 |
+
**kwargs,
|
| 723 |
+
) -> torch.Tensor:
|
| 724 |
+
"""
|
| 725 |
+
Apply self-attention with PBR material processing.
|
| 726 |
+
|
| 727 |
+
Processes multiple PBR material types sequentially, applying attention
|
| 728 |
+
computation for each material type separately and combining results.
|
| 729 |
+
|
| 730 |
+
Args:
|
| 731 |
+
attn: Attention module instance
|
| 732 |
+
hidden_states: Input hidden states tensor with PBR dimension
|
| 733 |
+
encoder_hidden_states: Optional encoder hidden states for cross-attention
|
| 734 |
+
attention_mask: Optional attention mask tensor
|
| 735 |
+
temb: Optional temporal embedding tensor
|
| 736 |
+
*args: Additional positional arguments
|
| 737 |
+
**kwargs: Additional keyword arguments
|
| 738 |
+
|
| 739 |
+
Returns:
|
| 740 |
+
Combined attention output for all PBR material types
|
| 741 |
+
"""
|
| 742 |
+
AttnUtils.handle_deprecation_warning(args, kwargs)
|
| 743 |
+
|
| 744 |
+
B = hidden_states.size(0)
|
| 745 |
+
pbr_hidden_states = torch.split(hidden_states, 1, dim=1)
|
| 746 |
+
|
| 747 |
+
# Process each PBR setting
|
| 748 |
+
results = []
|
| 749 |
+
for token, pbr_hs in zip(self.pbr_setting, pbr_hidden_states):
|
| 750 |
+
processed_hs = rearrange(pbr_hs, "b n_pbrs n l c -> (b n_pbrs n) l c").to("cuda:0")
|
| 751 |
+
result = self.process_single(attn, processed_hs, None, attention_mask, temb, token, False)
|
| 752 |
+
results.append(result)
|
| 753 |
+
|
| 754 |
+
outputs = [rearrange(result, "(b n_pbrs n) l c -> b n_pbrs n l c", b=B, n_pbrs=1) for result in results]
|
| 755 |
+
return torch.cat(outputs, dim=1)
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
class RefAttnProcessor2_0(BaseAttnProcessor):
|
| 759 |
+
"""
|
| 760 |
+
Reference attention processor with shared value computation across PBR materials.
|
| 761 |
+
|
| 762 |
+
This processor computes query and key once, but uses separate value projections
|
| 763 |
+
for different PBR material types, enabling efficient multi-material processing.
|
| 764 |
+
"""
|
| 765 |
+
|
| 766 |
+
def __init__(self, **kwargs):
|
| 767 |
+
"""
|
| 768 |
+
Initialize reference attention processor.
|
| 769 |
+
|
| 770 |
+
Args:
|
| 771 |
+
**kwargs: Arguments passed to BaseAttnProcessor initialization
|
| 772 |
+
"""
|
| 773 |
+
super().__init__(**kwargs)
|
| 774 |
+
self.pbr_settings = self.pbr_setting # Alias for compatibility
|
| 775 |
+
self.register_pbr_modules(["v_only", "out"], **kwargs)
|
| 776 |
+
|
| 777 |
+
def __call__(
|
| 778 |
+
self,
|
| 779 |
+
attn: Attention,
|
| 780 |
+
hidden_states: torch.Tensor,
|
| 781 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 782 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 783 |
+
temb: Optional[torch.Tensor] = None,
|
| 784 |
+
*args,
|
| 785 |
+
**kwargs,
|
| 786 |
+
) -> torch.Tensor:
|
| 787 |
+
"""
|
| 788 |
+
Apply reference attention with shared Q/K and separate V projections.
|
| 789 |
+
|
| 790 |
+
This method computes query and key tensors once and reuses them across
|
| 791 |
+
all PBR material types, while using separate value projections for each
|
| 792 |
+
material type to maintain material-specific information.
|
| 793 |
+
|
| 794 |
+
Args:
|
| 795 |
+
attn: Attention module instance
|
| 796 |
+
hidden_states: Input hidden states tensor
|
| 797 |
+
encoder_hidden_states: Optional encoder hidden states for cross-attention
|
| 798 |
+
attention_mask: Optional attention mask tensor
|
| 799 |
+
temb: Optional temporal embedding tensor
|
| 800 |
+
*args: Additional positional arguments
|
| 801 |
+
**kwargs: Additional keyword arguments
|
| 802 |
+
|
| 803 |
+
Returns:
|
| 804 |
+
Stacked attention output for all PBR material types
|
| 805 |
+
"""
|
| 806 |
+
AttnUtils.handle_deprecation_warning(args, kwargs)
|
| 807 |
+
|
| 808 |
+
def get_qkv(attn, hidden_states, encoder_hidden_states, **kwargs):
|
| 809 |
+
query = attn.to_q(hidden_states)
|
| 810 |
+
key = attn.to_k(encoder_hidden_states)
|
| 811 |
+
|
| 812 |
+
# Concatenate values from all PBR settings
|
| 813 |
+
value_list = [attn.to_v(encoder_hidden_states)]
|
| 814 |
+
for token in ["_" + token for token in self.pbr_settings if token != "albedo"]:
|
| 815 |
+
value_list.append(getattr(attn.processor, f"to_v{token}")(encoder_hidden_states))
|
| 816 |
+
value = torch.cat(value_list, dim=-1)
|
| 817 |
+
|
| 818 |
+
return query, key, value
|
| 819 |
+
|
| 820 |
+
# Core processing
|
| 821 |
+
hidden_states, residual, input_ndim, shape_info, batch_size, heads, head_dim = AttnCore.process_attention_base(
|
| 822 |
+
attn, hidden_states, encoder_hidden_states, attention_mask, temb, get_qkv_fn=get_qkv
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
# Split and process each PBR setting output
|
| 826 |
+
hidden_states_list = torch.split(hidden_states, head_dim, dim=-1)
|
| 827 |
+
output_hidden_states_list = []
|
| 828 |
+
|
| 829 |
+
for i, hs in enumerate(hidden_states_list):
|
| 830 |
+
hs = hs.transpose(1, 2).reshape(batch_size, -1, heads * head_dim).to(hs.dtype)
|
| 831 |
+
token_suffix = "_" + self.pbr_settings[i] if self.pbr_settings[i] != "albedo" else ""
|
| 832 |
+
target = attn if self.pbr_settings[i] == "albedo" else attn.processor
|
| 833 |
+
|
| 834 |
+
hs = AttnUtils.finalize_output(
|
| 835 |
+
hs, input_ndim, shape_info, attn, residual, getattr(target, f"to_out{token_suffix}")
|
| 836 |
+
)
|
| 837 |
+
output_hidden_states_list.append(hs)
|
| 838 |
+
|
| 839 |
+
return torch.stack(output_hidden_states_list, dim=1)
|