|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
from kernels import get_kernel |
|
|
|
|
|
flex = get_kernel("t-tech/flex-sae") |
|
|
|
|
|
@torch.compile(fullgraph=True) |
|
|
def hierarchical_sae_loss( |
|
|
indices: torch.Tensor, |
|
|
weight: torch.Tensor, |
|
|
vals: torch.Tensor, |
|
|
bias: torch.Tensor, |
|
|
target: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
emb = weight[indices].to(torch.float32) |
|
|
recon_cum = bias.to(torch.float32) + (emb * vals.unsqueeze(-1)).cumsum(dim=1) |
|
|
diff = recon_cum.to(torch.float32) - target.to(torch.float32).unsqueeze(1) |
|
|
loss = diff.pow(2).mean() |
|
|
return loss |
|
|
|
|
|
|
|
|
B = 2048 |
|
|
K = 256 |
|
|
F = 1024 * 128 |
|
|
D = 1024 |
|
|
WARMUP = 5 |
|
|
NUM_ITER = 100 |
|
|
dtype = torch.float32 |
|
|
|
|
|
vals = None |
|
|
decoder = None |
|
|
bias = None |
|
|
target = None |
|
|
indices = None |
|
|
|
|
|
|
|
|
def init_parameters(): |
|
|
global vals, decoder, bias, target, indices |
|
|
vals = torch.randn(B, K, dtype=dtype, device="cuda").abs().requires_grad_() |
|
|
decoder = torch.randn(F, D, dtype=dtype, device="cuda", requires_grad=True) |
|
|
bias = torch.randn(D, dtype=dtype, device="cuda", requires_grad=True) |
|
|
target = torch.randn(B, D, dtype=dtype, device="cuda") |
|
|
indices = torch.randint(0, F, (B, K), dtype=torch.long, device="cuda") |
|
|
|
|
|
|
|
|
timing_kernel = [] |
|
|
timing_vanilla = [] |
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
loss_kernel_list = torch.zeros((100,)) |
|
|
loss_vanilla_list = torch.zeros((100,)) |
|
|
|
|
|
|
|
|
def zero_grad(): |
|
|
vals.grad = None |
|
|
decoder.grad = None |
|
|
bias.grad = None |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
for i in range(NUM_ITER + WARMUP): |
|
|
init_parameters() |
|
|
start_kernel = torch.cuda.Event(enable_timing=True) |
|
|
end_kernel = torch.cuda.Event(enable_timing=True) |
|
|
start_vanilla = torch.cuda.Event(enable_timing=True) |
|
|
end_vanilla = torch.cuda.Event(enable_timing=True) |
|
|
|
|
|
start_kernel.record() |
|
|
loss_kernel = flex.triton_hierarchical_sae_loss(indices, decoder, vals, bias, target) |
|
|
loss_kernel.backward() |
|
|
end_kernel.record() |
|
|
|
|
|
zero_grad() |
|
|
start_vanilla.record() |
|
|
loss_vanilla = hierarchical_sae_loss(indices, decoder, vals, bias, target) |
|
|
loss_vanilla.backward() |
|
|
end_vanilla.record() |
|
|
if i >= WARMUP: |
|
|
torch.cuda.synchronize() |
|
|
timing_kernel.append(start_kernel.elapsed_time(end_kernel)) |
|
|
timing_vanilla.append(start_vanilla.elapsed_time(end_vanilla)) |
|
|
loss_kernel_list[i-WARMUP] = loss_kernel.detach() |
|
|
loss_vanilla_list[i-WARMUP] = loss_vanilla.detach() |
|
|
zero_grad() |
|
|
|
|
|
if torch.allclose(loss_kernel, loss_vanilla): |
|
|
print("β
Outputs are close! Everything is good! π") |
|
|
else: |
|
|
print("β Outputs mismatch... β οΈπ€") |
|
|
|
|
|
|
|
|
print(f"π¦ Triton Kernel Time (Ours): {np.mean(timing_kernel):.4f} Β± {np.std(timing_kernel):.4f} ms") |
|
|
print(f"π₯ Torch Compile Kernel Time: {np.mean(timing_vanilla):.4f} Β± {np.std(timing_vanilla):.4f} ms") |
|
|
print(f"π Speedup: {np.mean(timing_vanilla) / np.mean(timing_kernel):.2f}x") |